1-9 A-D E-G H-M N-P Q-S T-Z

Zinc Chloride

Zinc chloride is the name of chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are
 highly soluble in water. ZnCl2 itself is hygroscopic and even deliquescent. Samples should therefore be protected from sources of moisture, including the water 
vapor present in ambient air. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition 
is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

IUPAC name : Zinc chloride
Other names : 
Zinc(II) chloride
Zinc dichloride
Butter of zinc


Anhydrous ZnCl2 can be prepared from zinc and hydrogen chloride:

Zn(s) + 2 HCl → ZnCl2 + H2(g)
Hydrated forms and aqueous solutions may be readily prepared similarly by treating Zn metal with hydrochloric acid. Zinc oxide and zinc sulfide react with HCl:

ZnS(s) + 2 HCl(aq) → ZnCl2(aq) + H2S(g)
Unlike many other elements, zinc essentially exists in only one oxidation state, 2+, which simplifies purification of the chloride.

Commercial samples of zinc chloride typically contain water and products from hydrolysis as impurities. Such samples may be purified by recrystallization from hot dioxane.
Anhydrous samples can be purified by sublimation in a stream of hydrogen chloride gas, followed by heating the sublimate to 400 °C in a stream of dry nitrogen gas. Finally, the 
simplest method relies on treating the zinc chloride with thionyl chloride. 


Reactions
Molten anhydrous ZnCl2 at 500–700 °C dissolves zinc metal, and, on rapid cooling of the melt, a yellow diamagnetic glass is formed, which Raman studies indicate contains the Zn2+
2 ion.

A number of salts containing the tetrachlorozincate anion, ZnCl2−4, are known. "Caulton`s reagent", V2Cl3(thf)6Zn2Cl6 is an example of a salt containing Zn2Cl2−6. The compound 
Cs3ZnCl5 contains tetrahedral ZnCl2−4 and Cl− anions.No compounds containing the ZnCl4−6 ion have been characterized.

Whilst zinc chloride is very soluble in water, solutions cannot be considered to contain simply solvated Zn2+ ions and Cl− ions, ZnClxH2O(4−x) species are also present.
Aqueous solutions of ZnCl2 are acidic: a 6 M aqueous solution has a pH of 1.[14] The acidity of aqueous ZnCl2 solutions relative to solutions of other Zn2+ salts is due to the 
formation of the tetrahedral chloro aqua complexes where the reduction in coordination number from 6 to 4 further reduces the strength of the O–H bonds in the solvated water molecules.

In alkali solution in the presence of OH− ion various zinc hydroxychloride anions are present in solution, e.g. Zn(OH)3Cl2−, Zn(OH)2Cl2−2, ZnOHCl2−3, and Zn5(OH)8Cl2·H2O (simonkolleite) precipitates.[22]

When ammonia is bubbled through a solution of zinc chloride, the hydroxide does not precipitate, instead compounds containing complexed ammonia (ammines) are produced, Zn(NH3)4Cl2·H2O 
and on concentration ZnCl2(NH3)2.[23] The former contains the Zn(NH3)62+ ion [4], and the latter is molecular with a distorted tetrahedral geometry.[24] The species in aqueous solution
 have been investigated and show that Zn(NH3)42+ is the main species present with Zn(NH3)3Cl+ also present at lower NH3:Zn ratio.

Aqueous zinc chloride reacts with zinc oxide to form an amorphous cement that was first investigated in the 1855 by Stanislas Sorel. Sorel later went on to investigate the related
 magnesium oxychloride cement, which bears his name.When hydrated zinc chloride is heated, one obtains a residue of Zn(OH)Cl e.g.

ZnCl2·2H2O → ZnCl(OH) + HCl + H2O
The compound ZnCl2·​1⁄2HCl·H2O may be prepared by careful precipitation from a solution of ZnCl2 acidified with HCl. It contains a polymeric anion (Zn2Cl5−)n with balancing monohydrated 
hydronium ions, H5O2+ ions.The formation of highly reactive anhydrous HCl gas formed when zinc chloride hydrates are heated is the basis of qualitative inorganic spot tests.

The use of zinc chloride as a flux, sometimes in a mixture with ammonium chloride (see also Zinc ammonium chloride), involves the production of HCl and its subsequent reaction with 
surface oxides. Zinc chloride forms two salts with ammonium chloride: (NH4)2ZnCl4 and (NH4)3ClZnCl4, which decompose on heating liberating HCl, just as zinc chloride hydrate does.
 The action of zinc chloride/ammonium chloride fluxes, for example, in the hot-dip galvanizing process produces H2 gas and ammonia fumes.

Cellulose dissolves in aqueous solutions of ZnCl2, and zinc-cellulose complexes have been detected.Cellulose also dissolves in molten ZnCl2 hydrate and carboxylation and acetylation 
performed on the cellulose polymer.

Thus, although many zinc salts have different formulas and different crystal structures, these salts behave very similarly in aqueous solution. For example, solutions prepared from any
 of the polymorphs of ZnCl2, as well as other halides (bromide, iodide), and the sulfate can often be used interchangeably for the preparation of other zinc compounds. Illustrative is 
the preparation of zinc carbonate:

ZnCl2(aq) + Na2CO3(aq) → ZnCO3(s) + 2 NaCl(aq)
Applications
As a metallurgical flux
Zinc chloride has the ability to react with metal oxides (MO) to give derivatives of the formula MZnOCl2.[additional citation(s) needed] This reaction is relevant to the utility of
 ZnCl2 solution as a flux for soldering — it dissolves oxide coatings, exposing the clean metal surface.[33] Fluxes with ZnCl2 as an active ingredient are sometimes called
 "tinner`s fluid". Typically this flux was prepared by dissolving zinc foil in dilute hydrochloric acid until the liquid ceased to evolve hydrogen; for this reason, such flux was
 once known as "killed spirits". Because of its corrosive nature, this flux is not suitable for situations where any residue cannot be cleaned away, such as electronic work.
This property also leads to its use in the manufacture of magnesia cements for dental fillings and certain mouthwashes as an active ingredient.

In organic synthesis
An early use of zinc chloride (Silzic) was in building carbon skeletons by condensation of methanol molecules. Unsaturated hydrocarbons are the major products, with reaction conditions 
influencing the distribution of products, though some aromatic compounds were formed.[34] In 1880, it was found that molten zinc chloride catalyses an aromatization reaction generating
hexamethylbenzene. At the melting point of ZnCl2 (283 °C), the reaction has a ΔG = −1090 kJ/mol and can be idealised as

15 CH3OH → C6(CH3)6 + 3 CH4 + 15 H2O
The discoverers of this reaction rationalized it as involving condensation of methylene units followed by complete Friedel-Crafts methylation of the resulting benzene ring with
 chloromethane generated in situ.Such an alkylation transformation is an application of zinc chloride`s moderate strength as a Lewis acid, which is its principal role in 
laboratory synthesis. Other examples include catalyzing (A) the Fischer indole synthesis,and also (B) Friedel-Crafts acylation reactions involving activated aromatic rings.

Related to the latter is the classical preparation of the dye fluorescein from phthalic anhydride and resorcinol, which involves a Friedel-Crafts acylation.
This transformation has in fact been accomplished using even the hydrated ZnCl2 sample shown.

Hydrochloric acid alone reacts poorly with primary alcohols and secondary alcohols, but a combination of HCl with ZnCl2 (known together as the "Lucas reagent") is effective for
 the preparation of alkyl chlorides. Typical reactions are conducted at 130 °C. This reaction probably proceeds via an SN2 mechanism with primary alcohols but SN1 pathway with 
secondary alcohols.

Zinc chloride also activates benzylic and allylic halides towards substitution by weak nucleophiles such as alkenes:In similar fashion, ZnCl2 promotes selective NaBH3CN reduction of tertiary, allylic or benzylic halides to the corresponding hydrocarbons.

Zinc chloride is also a useful starting reagent for the synthesis of many organozinc reagents, such as those used in the palladium catalyzed Negishi coupling with aryl halides or vinyl
 halides.In such cases the organozinc compound is usually prepared by transmetallation from an organolithium or a Grignard reagent, for example:Zinc enolates, prepared from alkali metal
enolates and ZnCl2, provide control of stereochemistry in aldol condensation reactions due to chelation on to the zinc. In the example shown below, the threo product was favored over 
the erythro by a factor of 5:1 when ZnCl2 in DME/ether was used.The chelate is more stable when the bulky phenyl group is pseudo-equatorial rather than pseudo-axial, i.e., threo
 rather than erythro.



In textile and paper processing
Concentrated aqueous solutions of zinc chloride (more than 64% weight/weight zinc chloride in water) have the interesting property of dissolving starch, silk, and cellulose. 
Thus, such solutions cannot be filtered through standard filter papers. Relevant to its affinity for these materials, ZnCl2 is used as a fireproofing agent and in fabric "refresheners" 
such as Febreze. Vulcanized fibre is made by soaking paper in concentrated zinc chloride.

Smoke grenades
The zinc chloride smoke mixture ("HC") used in smoke grenades contains zinc oxide, hexachloroethane and granular aluminium powder, which, when ignited, react to form zinc 
chloride, carbon and aluminium oxide smoke, an effective smoke screen.

Fingerprint detection
Ninhydrin reacts with amino acids and amines to form a colored compound "Ruhemann`s purple" (RP). Spraying with a zinc chloride solution forms a 1:1 complex RP:ZnCl(H2O)2, which is 
more readily detected as it fluoresces better than Ruhemann`s purple.

Disinfectant
Historically, a dilute aqueous solution of zinc chloride was used as a disinfectant under the name "Burnett`s Disinfecting Fluid". [45] It is also used in some commercial brands of 
antiseptic mouthwash.

Skin cancer treatment
Zinc chloride has been used in alternative medicine to cause eschars, scabs of dead tissue, in an attempt to cure skin cancers.[46] Various products, such as Cansema or "black salve", 
containing zinc chloride and sold as cancer cures have been listed by the U.S. Food and Drug Administration (FDA) as fake [47] with warning letters being sent to suppliers.

Numerous reports in medical literature describe serious scarring and damage to normal skin by escharotic substances. Given these side-effects, its use in treatment is not warranted as there are much safer and more effective alternatives, such as radiation therapy and Mohs surgery.[49][50]

Safety
Zinc chloride is a skin irritant. After contact of the skin, immediate removal is necessary using soap and plenty of water. After contact of the eyes, adequate measures are rinsing with plenty of water or other eye rinse and contacting an ophthalmologist as soon as possible.[51]

Zinc chloride is caustic to the gastrointestinal tract, occasionally leading to hematemesis. Symptoms of acute intoxication are gastrointestinal distress, diarrhea, nausea, and abdominal pain. Vomiting occurs almost universally. The lethal dose in humans is 3–5 g.[citation needed] Decontamination of the gastrointestinal tract after oral uptake of zinc compounds is mostly unnecessary, since patients usually vomit sufficiently. Milk may be administered to decrease absorption of the metal. Zinc levels may be normalized with EDTA salts.[51]

Zinc chloride is extremely detrimental to the lungs, and pulmonary exposure to zinc chloride smoke has previously resulted in fatalities.Inhalation of fumes of zinc, zinc oxide, or zinc 
chloride leads to pulmonary edema and metal fume fever. Onset occurs within 4–6 h and may be delayed up to 8 h. Symptoms include rapid breathing, dyspnea, cough, fever, shivering, 
sweating, chest and leg pain, myalgias, fatigue, metallic taste, salivation, thirst, and leukocytosis, which can last from 24 to 48 h. In cases of fume inhalation, cortisone preparations
 should be applied immediately (e.g., by inhalation of Auxiloson) to avoid development of lung edema.

zinc chloride

Zinc dichloride

Butter of zinc

Zinc(II) chloride

Zinc butter

Zinc chloride (ZnCl2)

Zinkchloride

Zintrace

Zinc chloride fume

Zine dichloride

Zinc chloride, (solution)

Zinc (chlorure de)

Zinco (cloruro di)

Zinkchlorid [German]

Zinkchloride [Dutch]

Caswell No. 910

Zinc chloride, solution

MFCD00011295

Chlorure de zinc [French]

Zinc (chlorure de) [French]

CCRIS 3509

Zinco (cloruro di) [Italian]

HSDB 1050

EINECS 231-592-0

UN1840

UN2331

EPA Pesticide Chemical Code 087801

NSC 529648

AI3-04470

Zinc Chloride Solution Anhydrous

Zinc chloride, 98+%, extra pure

Zinc chloride, 97+%, ACS reagent

Zinc chloride, 98.5%, for analysis

Zinc chloride, 0.7M solution in THF, AcroSeal(R)

Zinc chloride, 2M solution in 2-MeTHF, AcroSeal(R)

Zinc chloride, 99.99%, (trace metal basis), anhydrous

Zinc chloride, 99.99%, (trace metal basis), extra pure

Zinc chloride, 1.0M solution in diethyl ether, AcroSeal(R)

Zinc chloride 0.1 M solution

Zinc chloride (TN)

Zinc muriate, solution

Zinc chloride [USP:JAN]

DSSTox_CID_15013

DSSTox_RID_79237

WLN: ZN G2

Zinc chloride [USAN:JAN]

DSSTox_GSID_35013

Zinc chloride (JP17/USP)

Zinc chloride, LR, >=97%

Zinc chloride, p.a., 97.0%

Zinc chloride in plastic container

Tox21_301492

Zinc chloride, for molecular biology

AKOS016017250

Zinc chloride, ACS reagent, >=97%

LS-3229

NSC-529648

Zinc chloride, reagent grade, >=98%

Zinc chloride solution, 0.5 M in THF

NCGC00255612-01

BP-12589

CAS-7646-85-7

FT-0645122

Zinc chloride, 99.999% trace metals basis

Zinc chloride, SAJ first grade, >=95.0%

Zinc chloride, JIS special grade, >=98.0%

D02058

EC 231-592-0

Zinc chloride solution, 1.0 M in diethyl ether

Zinc chloride, anhydrous [UN2331] [Corrosive]

Zinc chloride, solution [UN1840] [Corrosive]

Zinc chloride, solution [UN1840] [Corrosive]

Q204714

Zinc chloride, anhydrous [UN2331] [Corrosive]

BRD-K46586998-001-01-1

Zinc chloride solution, 1.9 M in 2-methyltetrahydrofuran

Zinc chloride, BioReagent, for molecular biology, >=97.0%

Zinc chloride, anhydrous, powder, >=99.995% trace metals basis

Zinc chloride, anhydrous, free-flowing, Redi-Dri(TM), ACS reagent, >=97%

Zinc chloride, anhydrous, beads, amorphous, -10 mesh, 99.99% trace metals basis

Zinc chloride, anhydrous, beads, amorphous, -10 mesh, 99.999% trace metals basis

Zinc chloride, anhydrous, free-flowing, Redi-Dri(TM), reagent grade, >=98%

Zinc chloride, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., >=98%

Zinc chloride, puriss., meets analytical specification of Ph. Eur., BP, USP, 98-100.5%

Zinc atomic spectroscopy standard concentrate 1.00 g Zn, 1.00 g/L, for 1L standard solution, analytical standard


Properties
vapor pressure  1 mmHg ( 428 °C)
assay  ≥98%
mp  293 °C (lit.)

General description
Electrodeposition of zinc on glassy carbon and nickel substrates in zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt is studied.[4]

Application
Zinc Chloride may be used:
• as catalyst in knoevenagel condensation of carbonyl substrates with acidic methylene reagents[3]
• in the preparation of porous carbon nanofibers, useful in the fabrication of efficient electrodes for supercapacitors[5]
• as a catalyst in preparation of poly(propylene fumarate)[6]
• in the low temperature synthesis of nanocrystalline zinc oxide films[1]
• in the synthesis of zinc oxide nanoparticles with low agglomeration. Aqueous suspensions of the nanoparticles displayed high transmittance in the visible light range, but exhibited strong absorption in the UV range.[2]

Compounds
In chemical compounds, zinc exhibits almost exclusively a +2 oxidation state. A few compounds of zinc in the +1 state have been reported, but never any compounds of zinc in the +3 state or higher.


Zinc chloride is a chemical compound whose formula is ZnCl2, with a molecular weight of 136.3 g / mol. This product is hygroscopic and deliquescent and therefore must be protected from moisture, even that contained in the atmosphere.
Applications:
One of the main applications of zinc chloride is to act as an electrolyte in dry batteries (zinc-carbon). Zinc chloride has the ability to attack the metal oxides, this property allowing its use as flux in the weld metal, dissolving the oxide layers, and leaving the metal surface clean. Zinc chloride is used in various fields such as water treatment, as a fireproofing agent in textile processing and in the manufacture of bactericides, fungicides and stabilizers for plastics.

This product can be manufactured in liquid form at any concentration up to 65% in solid form as a dry powder. The anhydrous material is packed in polyethylene valve bags of 25 or 50 Kgs, in big bags of 1.000 Kgs and in metal drums of 250 Kgs. The liquid material can be delivered in tankers or IBC`S of 1.000 lts. All the packaging we use is UN approved.
Zinc Chloride is an excellent water soluble crystalline Zinc source for uses compatible with chlorides. Chloride compounds can conduct electricity when fused or dissolved in water. Chloride materials can be decomposed by electrolysis to chlorine gas and the metal. They are formed through various chlorination processes whereby at least one chlorine anion (Cl-) is covalently bonded to the relevant metal or cation. Ultra high purity and proprietary formulations can be prepared. The chloride ion controls fluid equilibrium and pH levels in metabolic systems. They can form either inorganic or organic compounds. Zinc Chloride is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. We also produce Zinc Chloride Solution. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. 
Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for
 converting relevant units of measurement.


Butter of zinc

Zinc (chlorure de)

Zinc butter

Zinc chloride
EC Inventory, Ataman Kimya, Pre-Registration process, Other, EU. Cosmetics Regulation, Annex III, Restricted Substances, EU. Worker Protection-Hazardous (98/24), EU. Dangerous Substances - Eco-Labels, EU. Workplace Signs, EU. Hazardous Waste Properties: Annex III (2008/98/EC), EU. Young People at Work (94/33)
Zinc chloride (ZnCl2)

Zinc chloride in plastic container

ZINC CHLORIDE SOLUTION
EU. ADN Dangerous Goods Lists, Directive 2008/68/EC, EU. ADR Dangerous Goods Lists, Directive 2008/68/EC, EU. RID Dangerous Goods Lists, Directive 2008/68/EC
Zinc chloride, (solution)

ZINC CHLORIDE, ANHYDROUS
EU. ADN Dangerous Goods Lists, Directive 2008/68/EC, EU. ADR Dangerous Goods Lists, Directive 2008/68/EC, EU. RID Dangerous Goods Lists, Directive 2008/68/EC
Zinc dichloride

Zinc(II) chloride

Zinco (cloruro di)

Zine dichloride

Zintrace
Other


chlorek cynku(II) (pl)

chlorid zinečnatý (cs)

chlorid zinočnatý (sk)

chlorure de zinc (fr)

cink-klorid (hu)

cinka hlorīds (lv)

cinko chloridas (lt)

cinkov klorid (hr)

cloreto de zinco (pt)

clorura de zinc (ro)

cloruro de cinc (es)

cloruro di zinco (it)

dichlorek cynku (pl)

sinkkikloridi (fi)

sinkklorid (no)

Tsinkkloriid (et)

zinkchlorid (da)
Ataman Kimya
zinkchloride (nl)
Ataman Kimya
zinkklorid (sv)
Ataman Kimya
χλωρίδιο του ψευδαργύρου (el)
Ataman Kimya
цинков хлорид (bg)
Ataman Kimya


Dichlorozinc
Ataman Kimya, Other
nc chloride
Ataman Kimya
zinc cloride

Zinc oxide
Ataman Kimya
zinc(2+) dichloride
Other
zinc(2+) ion dichloride

zinc-chloride-
Ataman Kimya

Hegaflux AS

Zinc (II) Chloride

Zinkchlorid, freilaufend
Zinc dichloride, Zinc(II) chloride, Dichlorozinc, Zinc Butter, cas 21351-91-7 (zinc chloride hydrate / hydrated)


Butter of zinc
Other
Zinc (chlorure de)
Other
Zinc butter
Other
Zinc chloride
EC Inventory, Ataman Kimya, Pre-Registration process, Other, EU. Cosmetics Regulation, Annex III, Restricted Substances, EU. Worker Protection-Hazardous (98/24), EU. Dangerous Substances - Eco-Labels, EU. Workplace Signs, EU. Hazardous Waste Properties: Annex III (2008/98/EC), EU. Young People at Work (94/33)
Zinc chloride (ZnCl2)
Other
Zinc chloride in plastic container
Other
ZINC CHLORIDE SOLUTION
EU. ADN Dangerous Goods Lists, Directive 2008/68/EC, EU. ADR Dangerous Goods Lists, Directive 2008/68/EC, EU. RID Dangerous Goods Lists, Directive 2008/68/EC
Zinc chloride, (solution)
Other
ZINC CHLORIDE, ANHYDROUS
EU. ADN Dangerous Goods Lists, Directive 2008/68/EC, EU. ADR Dangerous Goods Lists, Directive 2008/68/EC, EU. RID Dangerous Goods Lists, Directive 2008/68/EC
Zinc dichloride
Other
Zinc(II) chloride
Other
Zinco (cloruro di)
Other
Zine dichloride
Other
Zintrace
Other
Translated names
chlorek cynku(II) (pl)
Ataman Kimya
chlorid zinečnatý (cs)
Ataman Kimya
chlorid zinočnatý (sk)
Ataman Kimya
chlorure de zinc (fr)
Ataman Kimya
cink-klorid (hu)
Ataman Kimya
cinka hlorīds (lv)
Ataman Kimya
cinko chloridas (lt)
Ataman Kimya
cinkov klorid (hr)
Ataman Kimya
cloreto de zinco (pt)
Ataman Kimya
clorura de zinc (ro)
Ataman Kimya
cloruro de cinc (es)
Ataman Kimya
cloruro di zinco (it)
Ataman Kimya
dichlorek cynku (pl)
Ataman Kimya
sinkkikloridi (fi)

sinkklorid (no)

Tsinkkloriid (et)

zinkchlorid (da)

zinkchloride (nl)

zinkklorid (sv)

χλωρίδιο του ψευδαργύρου (el)

цинков хлорид (bg)

IUPAC names
Dichlorozinc

nc chloride

zinc cloride

Zinc oxide

zinc(2+) dichloride

zinc(2+) ion dichloride

zinc-chloride-

Hegaflux AS

Zinc (II) Chloride

Zinc chloride [Wiki]
231-592-0 [EINECS]
7646-85-7 [RN]
86Q357L16B
Additive Screening Solution 29/Kit-No 78374
dichlorozinc
Dichlorure de zinc [French] [ACD/IUPAC Name]
MFCD00011295 [MDL number]
ZH1400000
ZINC CHLORIDE ZN-65
Zinc dichloride [ACD/IUPAC Name]
zinc(II) chloride
zinc(ii) dichloride
Zinkchlorid [German]
Zinkdichlorid [German] [ACD/IUPAC Name]
[7646-85-7]
21351-91-7 [RN]
24359-56-6 [RN]
53917-99-0 [RN]
99.95% (metals basis)
ACS, 97%
butter of zinc
C016837
chlorure de zinc
Chlorure de zinc [French]
EINECS 231-592-0
Galvanizers Flux
hexite
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:49976
Hydrochloric acid zinc salt (2:1)
Tinning flux
UN 1840
UN 2331
UNII:86Q357L16B
UNII-86Q357L16B
WLN: ZN G2
Zinc (chlorure de)
Zinc (chlorure de) [French]
zinc (II) chloride
zinc and dichloride
Zinc atomic spectroscopy standard concentrate 1.00 g Zn
Zinc butter
Zinc chloride (99.99%-Zn) PURATREM
Zinc chloride (JP15/USP) [USP]
Zinc chloride (TN)
Zinc Chloride ACS USP
Zinc Chloride Solution 50%
Zinc chloride, 0.5M solution in THF
Zinc chloride, 0.7M solution in THF
Zinc chloride, 1.9M in 2-MeTHF
Zinc chloride, 1M in diethyl ether
Zinc chloride, 25mM aqueous solution
Zinc Chloride, ACS grade -10 mesh
Zinc chloride, anhydrous [UN2331] [Corrosive]
Zinc chloride, anhydrous, USP grade
Zinc chloride, ultra dry
ZINC CHLORIDE|DICHLOROZINC
Zinc dichloride fume
Zinc muriate
Zinc standard concentrate 10.00 g Zn
zinc(2+) chloride
ZINC(2+) DICHLORIDE
zinc(ii)chloride
Zincchloride
Zinco
Zinco (cloruro di)
Zinco (cloruro di) [Italian]
Zinctrace
Zine dichloride
Zinkchlorid
Zinkchlorid [German]
Zinkchloride
Zinkchloride [Dutch]
Zintrace
氯化锌 [Chinese]


USES

Dry Cell or Batteries: Zinc Chloride is commonly used in dry cell batteries as an electrolyte where it also acts as a moisture absorbent and corrosion inhibitor. ZnCl2 is an excellent water soluble Zinc source for uses compatible with chlorides. Chloride compounds can conduct electricity when fused or dissolved in water. Chloride materials can be decomposed by electrolysis to chlorine gas and the metal. They are formed through various chlorination processes whereby at least one chlorine anion (Cl-) is covalently bonded to the relevant metal or cation. the item is generally immediately available in most volumes and high purity.

A zinc chloride battery is a heavy duty variation of a zinc carbon battery. It is used in applications that require moderate to heavy current drains. Zinc chloride batteries have better voltage discharge per time characteristics and better low temperature performance than carbon zinc batteries. They batteries are used in radios, flashlights, lanterns, fluorescent lanterns, motor driven devices, portable audio equipments, communications equipments, electronic games, calculators, and remote control transmitters.

Electroplating : Today, there are three primary types of acid zinc plating baths: straight ammonium chloride, straight potassium chloride and mixed ammonium chloride/potassium chloride. Acid zinc plating systems have several advantages over alkaline cyanide and alkaline non-cyanide zinc plating systems except that in acid zinc plating, the electrolyte is extremely corrosive.

Ammonium chloride zinc plating. The ammonium chloride bath is the most forgiving of the three major types of acid zinc plating because of its wide operating parameters. The primary drawback of this system is the high level of ammonia, which can cause problems in wastewater treatment. Ammonia acts as a chelator, and if the rinse waters are not segregated from other waste streams, removal of metals to acceptable levels using standard water treatment practices can be difficult and expensive. Ammonia is also regulated in many communities.

Potassium chloride zinc plating. Potassium chloride zinc plating solutions are attractive because they contain no ammonia. The disadvantages of this system are a greater tendency to burn on extreme edges and higher operating costs. The potassium bath also requires the use of relatively expensive boric acid to buffer the solution and prevent burning in the high-current-density areas, functions performed by the ammonium chloride in the other systems.

Mixed ammonium chloride/potassium chloride zinc plating. This bath combines the best of the ammonia and ammonia-free baths. Because potassium chloride is less expensive than ammonium chloride, the maintenance costs of the mixed bath are lower than the ammonia bath, and it does not require boric acid. The ammonia levels in the rinse waters are low enough that it does not significantly interfere with wastewater treatment, even if plating nickel and copper in the same plant with mixed waste streams. If local regulations restrict the level of ammonia discharged, special waste treatment equipment will be required, and the non-ammonia bath is most likely the best choice.

Galvanizing, Soldering and Tinning Fluxes:  Zinc Chloride is used in fluxes for galvanizing, soldering and tinning. Its ability to remove oxides and salts from metal surfaces insures good metal to metal bonding. It has the ability to attack metal oxides (MO) to give derivatives of the formula MZnOCl2. This reaction is relevant to the utility of ZnCl2 as a flux for soldering - it dissolves oxide coatings exposing the clean metal surface. Typically this flux was prepared by dissolving zinc foil in dilute hydrochloric acid until the liquid ceased to evolve hydrogen; for this reason, such flux was once known as killed spirits or "Marela".

Agriculture: It is very rarely used in agriculture. It may be reacted with chelating agents to form solutions of zinc that are biologically available to plants and animals. It`s the Chelate manufacturing that consumes Zinc Chloride.

Petroleum: It is an excellent emulsion breaker and is used to separate oil from water. It is also an effective packer fluid in oil and gas wells due to its high specific gravity. However its a little more costly than the other low specific gravity fluids used in the process.

Water Treatment: It is used in specialty corrosion inhibitors in cooling towers, potable water, and in gas and oil wells.

Resins: It is used in Ion - Exchange resins production.

Paints: It is used in for the production of lithopone and as pigment for zinc chromate.

Rubber: It is used as accelerator in the vulcanizing process of rubber.

Glue, wood working: It is used in for the preservation of glue, and for the impregnation of timber.

Printing: It is used in off-set in the chemical products.

Odor Control: It reacts with sulfide to minimize release of H2S gas in waste treatment facilities.

Oil-Gas Wells: High-density solutions of zinc chloride and calcium chloride give good performance in well completion and work-over operations; the solutions also used as packer 
fluids under certain well conditions. Zinc chloride has been used in specialty corrosion inhibitors and invert emulsion breakers.

Vulcanized Fiber & Reclaimed Rubber: Water-leaf paper is gelatinized with zinc chloride solution is lesstacky, drier and less moisture-absorbent than caustic reclaimed rubber. 
The zinc chloride not only dissolves the cellulosic fibers in the scrap, but also catalyzes depolymerization of the elastomer. Similar method is used for Rubber reclaimed from 
natural, styrene-butadiene rubber (SBR), and mixed scrap

Animal drug: Zinc Chloride is used for the production of zinc bacitracin.

Herbicide: Zinc Chloride is used as an herbicide. It is used to control lichen and moss growing on the roofs of houses and other domestic dwellings, along walks, driveways, fences, 
and wherever moss grows

Chemical: Zinc Chloride is used in the production of ethyl acetate. It is used as condensing agent for the production of organic dye-stuff. It is used as a stabilizing agent for
 diazonium compounds. It is used for the production of active carbon. Zinc Chloride is used for Friedel Craft Reaction, Azotropic or Azeotropic Distillation, Desiccation. Zinc laurate,
 linoleate Stearate or resinate can be formed from zinc chloride solutions and solutions of the corresponding sodium salt. Zinc chloride is a Lewis acid and therefore electrophilic in 
character. Its catalytic activity is milder than that of aluminum chloride in, for example, Friedel-Crafts type reactions. Zinc chloride is particularly effective in catalyzing reactions
 that eliminate molecules of water, ammonia or mercaptans. Its solutions gelatinize cellulosic materials and induce crosslinking in such polymer formers as the methylol ureas. It absorbs 
readily on charcoal or silica for catalyzing acylations and alkylations by Friedel-Crafts synthesis. In esterifications and condensation reactions, it facilitates the elimination of 
water or ammonia molecules from the reactants. One example is the Fischer idole synthesis.

Miscellaneous:

Zinc Chloride has been used as a catalyst in production of methylene chloride from methyl alcohol.

In the textile industry it has found use in resin systems to impart durable press to cotton and synthetic fabrics.

It has been used in reclaiming rubber where it dissolves rayon cord.

In conjunction with sodium dichromate it has made an excellent wood preservative.

Zinc Chloride has found use in the manufacture of glue, diazo dyes, paper, cosmetics, rayon, synthetic fibers, disinfectants and fire fighting foam.

In ore refining it has been used as a flotation agent.

It is an excellent source of zinc as a starting material in the production of other zinc chemicals and is an effective catalyst for removing molecules of water, ammonia or mercaptants.

Zinc Chloride is used for Friedel Craft Reaction, Azotropic or Azeotropic Distillation, Desiccation & Karl Fischer.

In the laboratory, zinc chloride finds wide use, principally as a moderate-strength Lewis acid. It can catalyze the Fischer indole synthesis and also Friedel-Crafts acylation reactions 
involving activated aromatic rings.

Related to the latter is the classical preparation of the dye fluorescein from phthalic anhydride and resorcinol, which involves a Friedel-Crafts acylation.

Hydrochloric acid alone reacts poorly with primary alcohols and secondary alcohols, but a combination of the acid with Zn (known together as the "Lucas reagent") at 130°C is effective 
for the preparation of alkyl chlorides. This probably reacts via an SN2 mechanism with primary alcohols but via SN1 with secondary alcohols.

Zinc chloride is also able to activate benzylic and allylic halides towards substitution by weak nucleophiles such as alkenes.

In similar fashion, Zinc Chloride promotes selective NaBH3CN reduction of tertiary, allylic or benzylic halides to the corresponding hydrocarbons.

Zinc chloride is also a useful starting point for the synthesis of many organo zinc reagents, such as those used in the palladium catalyzed Negishi coupling with aryl halides or vinyl 
halides. In such cases the organozinc compound is usually prepared by transmetallation from an organolithium or a Grignard reagent.

Zinc enolates, prepared from alkali metal enolates and ZnCl2, provide control of stereochemistry in aldol condensation reactions due to chelation on to the zinc. This is because 
the chelate is more stable when the bulky phenyl group is pseudo-equatorial rather than pseudo-axial, i.e., threo rather than erythro.

Ataman Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.