1-9 A-D E-G H-M N-P Q-S T-Z

HEMA (HİDROKSİETİL METAKRİLAT, HYDROXYETHYL METACRYLATE)

HEMA (HİDROKSİETİL METAKRİLAT, HYDROXYETHYL METACRYLATE)

 

CAS No. : 868-77-9
EC No. : 212-782-2

 

 

Synonyms:
2-HYDROXYETHYL METHACRYLATE; 868-77-9; Glycol methacrylate; Hydroxyethyl methacrylate; Glycol monomethacrylate; Ethylene glycol methacrylate; HEMA; 2-(Methacryloyloxy)ethanol; 2-Hydroxyethylmethacrylate; Mhoromer; Ethylene glycol monomethacrylate; Monomer MG-1; 2-hydroxyethyl 2-methylprop-2-enoate; Methacrylic acid, 2-hydroxyethyl ester; (hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester; PHEMA; beta-Hydroxyethyl methacrylate; NSC 24180; 2-Hydroxyethyl 2-methylacrylate; UNII-6E1I4IV47V; PEG-5 methacrylate; CCRIS 6879; CHEBI:34288; Ethylene glycol, monomethacrylate; HSDB 5442; HYDROXYETHYL METACRYLATE; PEG-MA; POLYHYDROXYETHYL METHACRYLATE; EINECS 212-782-2; BRN 1071583; Monomethacrylic ether of ethylene glycol; 6E1I4IV47V; polyethylene glycol methacrylate; .beta.-Hydroxyethyl methacrylate; 1,2-Ethanediol mono(2-methyl)-2-propenoate; MFCD00002863; 12676-48-1; methacryloyloxyethyl alcohol; Poly-hema; Bisomer HEMA; 2-Hydroxyethyl methacrylate, 97%, stabilized; Hydroxymethacrylate gel; Polyglycol methacrylate; Glycol methacrylate gel; Poly(hydroxyethyl methacrylate); PEG-8 methacrylate; hydroxyethylmethacrylate; hydroxyehtyl methacrylate; hydroxylethyl methacrylate; 2-hydroxyetyl methacrylate; DSSTox_CID_2128; Epitope ID:117123; UNII-9XEM35MI4M; EC 212-782-2; 2-hydroxylethyl methacrylate; 2-hydroxy ethyl methacrylate; 2-hydroxyethyl(methacrylate); 9XEM35MI4M; DSSTox_RID_76499; UNII-W321DU8DF9; DSSTox_GSID_22128; SCHEMBL14886; WLN: Q2OVY1&U1; 2-methacryloyloxyethyl alcohol; 25249-16-5; 4-02-00-01530 (Beilstein Handbook Reference); ethyleneglycol monomethacrylate; KSC176I7D; BIDD:ER0648; Methacrylic acid 2-hydroxyethyl; W321DU8DF9; CHEMBL1730239; DTXSID7022128; CHEBI:53709; CTK0H6471; HYDROXYETHYL METACRYLATE; poly(ethylene glycol methacrylate); poly(ethylene glycol) methacrylate; 2-Hydroxyethyl methacrylate, 98%; 2-Hydroxyethyl 2-methylacrylate #; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, homopolymer; KS-00000X9T; NSC24180; ZINC1608929; 2-Hydroxyethyl methacrylate (HEMA); Tox21_200415; ANW-38400; NSC-24180; poly(ethylene glycol monomethacrylate); AKOS015899920; Methacrylic Acid 2-Hydroxyethyl Ester; CS-W013439; DS-9647; NE10234; NCGC00166101-01; NCGC00166101-02; NCGC00257969-01; AK159194; CAS-868-77-9; K551; LS-89930; 2-Hydroxyethyl methacrylate,ophthalmic grade; 1,2-Ethanediol, mono(2-methyl)-2-propenyl; FT-0628271; M0085; NS00008941; 5627-EP2269995A1; 5627-EP2275418A1; C14530; Methacrylic acid, polyethylene glycol monoester; 2-Methyl-2-propenoic acid, 2-hydroxyethyl ester; alpha-methacryloyl-omega-hydroxypoly(oxyethylene); Q424799; J-509674; 2-Hydroxyethyl methacrylate, embedding medium (for microscopy); Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propen-1-yl)-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propenyl)-omega-hydroxy-; 2-Hydroxyethyl methacrylate, >=99%, contains <=50 ppm monomethyl ether hydroquinone as inhibitor; HYDROXYETHYL METACRYLATE; 2-Hydroxyethyl methacrylate, contains <=250 ppm monomethyl ether hydroquinone as inhibitor, 97%; Hema-ema; Hydroxyethyl methacrylate-ethyl methacrylate; 26335-61-5; EMA HEMA; Hydroxyethylmethacrylate-ethylmethacrylate copolymer; SCHEMBL5534844; CTK4F7688; DTXSID70180949; 2-Propenoic acid, 2-methyl-, ethyl ester, polymer with 2-hydroxyethyl 2-methyl-2-propenoate; Hydroxyethylmethacrylate; 2-HYDROXYETHYL METHACRYLATE; hidroksietilmetakrilat; (Hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester; Methacrylic acid, 2-hydroxyethyl ester; β-Hydroxyethyl methacrylate; Ethylene glycol methacrylate; Ethylene glycol monomethacrylate; Glycol methacrylate; Glycol monomethacrylate; Hydroxyethyl methacrylate; Monomer MG-1; 2-(Methacryloyloxy)ethanol; Mhoromer; 2-Methyl-2-propenoic acid, 2-hydroxyethyl ester; Bisomer HEMA; GMA; HEMA; 1,2-Ethanediol, mono(2-methyl)-2-propenyl; NSC 24180; 1,2-Ethanediol, mono(2-methyl)-2-propenoate; 868-77-9; Glycol methacrylate; glikol metakrilat; Hydroxyethyl methacrylate; hidroksimetil metakrilat; Glycol monomethacrylate; glikol monometakrilat; hikroksietil metakrilat; metakrilate; iki hidroksimetil metakrilat; hidroksi etil metakrilat; methakrilat; hidroksi metil metakrilat; Ethylene glycol methacrylate; HEMA; 2-(Methacryloyloxy)ethanol; etilen glikol metrakrilat; akrilat; akrilate; 2-Hydroxyethylmethacrylate; Mhoromer; HYDROXYETHYL METACRYLATE; Ethylene glycol monomethacrylate; Monomer MG-1; 2-hydroxyethyl 2-methylprop-2-enoate; Methacrylic acid, 2-hydroxyethyl ester; hidroksietil ester; hidroksi etil ester; (hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester PHEMA, h e m a; beta-Hydroxyethyl methacrylate; beta hidroksi metakrilat; NSC 24180; 2-Hydroxyethyl 2-methylacrylate; UNII-6E1I4IV47V; PEG-5 methacrylate; CCRIS 6879; CHEBI:34288; Ethylene glycol, monomethacrylate; HSDB 5442; PEG-MA; POLYHYDROXYETHYL METHACRYLATE; EINECS 212-782-2; BRN 1071583; Monomethacrylic ether of ethylene glycol; metakrilik asit; 6E1I4IV47V; polyethylene glycol methacrylate; .beta.-Hydroxyethyl methacrylate; 1,2-Ethanediol mono(2-methyl)-2-propenoate; MFCD00002863; 12676-48-1; methacryloyloxyethyl alcohol; Poly-hema; poli hema; Bisomer HEMA; bizomer hema; 2-Hydroxyethyl methacrylate, 97%, stabilized; Hydroxymethacrylate gel; hidroksi metakrilat jel; Polyglycol methacrylate; Glycol methacrylate gel; Poly(hydroxyethyl methacrylate); PEG-8 methacrylate; hydroxyethylmethacrylate; hydroxyehtyl methacrylate; hydroxylethyl methacrylate; 2-hydroxyetyl methacrylate; DSSTox_CID_2128; Epitope ID:117123; UNII-9XEM35MI4M; EC 212-782-2; 2-hydroxylethyl methacrylate; 2-hydroxy ethyl methacrylate; 2-hydroxyethyl(methacrylate); 9XEM35MI4M; DSSTox_RID_76499; UNII-W321DU8DF9; DSSTox_GSID_22128; HYDROXYETHYL METACRYLATE; SCHEMBL14886; WLN: Q2OVY1&U1; 2-methacryloyloxyethyl alcohol; 25249-16-5; 4-02-00-01530 (Beilstein Handbook Reference); ethyleneglycol monomethacrylate; KSC176I7D; BIDD:ER0648; Methacrylic acid 2-hydroxyethyl; W321DU8DF9; CHEMBL1730239; DTXSID7022128; CHEBI:53709; CTK0H6471; poly(ethylene glycol methacrylate); poly(ethylene glycol) methacrylate; 2-Hydroxyethyl methacrylate, 98%; 2-Hydroxyethyl 2-methylacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, homopolymer; KS-00000X9T; NSC24180; homopolimer; homo polimer; LS-89930; 2-Hydroxyethyl methacrylate,ophthalmic grade; 1,2-Ethanediol, mono(2-methyl)-2-propenyl; 2-Hydroxyethyl methacrylate, embedding medium (for microscopy); Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propen-1-yl)-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propenyl)-omega-hydroxy-; 2-Hydroxyethyl methacrylate, >=99%, contains <=50 ppm monomethyl ether hydroquinone as inhibitor; 2-Hydroxyethyl methacrylate, contains <=250 ppm monomethyl ether hydroquinone as inhibitor, 97%; Hydroxyethylmethacrylate; 2-HYDROXYETHYL METHACRYLATE; 868-77-9; Glycol methacrylate; Hydroxyethyl methacrylate; Glycol monomethacrylate; Ethylene glycol methacrylate; HEMA; 2-(Methacryloyloxy)ethanol; HYDROXYETHYL METACRYLATE; 2-Hydroxyethylmethacrylate; Mhoromer; Ethylene glycol monomethacrylate; Monomer MG-1; 2-hydroxyethyl 2-methylprop-2-enoate; Methacrylic acid, 2-hydroxyethyl ester; (hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester; PHEMA; beta-Hydroxyethyl methacrylate; NSC 24180; 2-Hydroxyethyl 2-methylacrylate; UNII-6E1I4IV47V; PEG-5 methacrylate; CCRIS 6879; CHEBI:34288; Ethylene glycol, monomethacrylate; HSDB 5442; HYDROXYETHYL METACRYLATE; PEG-MA; POLYHYDROXYETHYL METHACRYLATE; EINECS 212-782-2; BRN 1071583; Monomethacrylic ether of ethylene glycol; 6E1I4IV47V; polyethylene glycol methacrylate; .beta.-Hydroxyethyl methacrylate; 1,2-Ethanediol mono(2-methyl)-2-propenoate; MFCD00002863; 12676-48-1; methacryloyloxyethyl alcohol; Poly-hema; Bisomer HEMA; 2-Hydroxyethyl methacrylate, 97%, stabilized; Hydroxymethacrylate gel; Polyglycol methacrylate; Glycol methacrylate gel; Poly(hydroxyethyl methacrylate); PEG-8 methacrylate; hydroxyethylmethacrylate; hydroxyehtyl methacrylate; hydroxylethyl methacrylate; 2-hydroxyetyl methacrylate; DSSTox_CID_2128; Epitope ID:117123; UNII-9XEM35MI4M; EC 212-782-2; 2-hydroxylethyl methacrylate; 2-hydroxy ethyl methacrylate; 2-hydroxyethyl(methacrylate); 9XEM35MI4M; DSSTox_RID_76499; UNII-W321DU8DF9; HYDROXYETHYL METACRYLATE; DSSTox_GSID_22128; SCHEMBL14886; WLN: Q2OVY1&U1; 2-methacryloyloxyethyl alcohol; 25249-16-5; 4-02-00-01530 (Beilstein Handbook Reference); ethyleneglycol monomethacrylate; KSC176I7D; BIDD:ER0648; Methacrylic acid 2-hydroxyethyl; W321DU8DF9; CHEMBL1730239; DTXSID7022128; CHEBI:53709; CTK0H6471; poly(ethylene glycol methacrylate); poly(ethylene glycol) methacrylate; 2-Hydroxyethyl methacrylate, 98%; 2-Hydroxyethyl 2-methylacrylate #; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, homopolymer; KS-00000X9T; NSC24180; ZINC1608929; 2-Hydroxyethyl methacrylate (HEMA); Tox21_200415; ANW-38400; NSC-24180; poly(ethylene glycol monomethacrylate); AKOS015899920; Methacrylic Acid 2-Hydroxyethyl Ester; CS-W013439; DS-9647; NE10234; NCGC00166101-01; NCGC00166101-02; NCGC00257969-01; AK159194; CAS-868-77-9; K551; LS-89930; 2-Hydroxyethyl methacrylate,ophthalmic grade; 1,2-Ethanediol, mono(2-methyl)-2-propenyl; FT-0628271; M0085; NS00008941; 5627-EP2269995A1; 5627-EP2275418A1; C14530; Methacrylic acid, polyethylene glycol monoester; 2-Methyl-2-propenoic acid, 2-hydroxyethyl ester; alpha-methacryloyl-omega-hydroxypoly(oxyethylene); Q424799; J-509674; 2-Hydroxyethyl methacrylate, embedding medium (for microscopy); Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propen-1-yl)-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propenyl)-omega-hydroxy-; 2-Hydroxyethyl methacrylate, >=99%, contains <=50 ppm monomethyl ether hydroquinone as inhibitor; 2-Hydroxyethyl methacrylate, contains <=250 ppm monomethyl ether hydroquinone as inhibitor, 97%; Hema-ema; Hydroxyethyl methacrylate-ethyl methacrylate; 26335-61-5; EMA HEMA; Hydroxyethylmethacrylate-ethylmethacrylate copolymer; SCHEMBL5534844; CTK4F7688; DTXSID70180949; 2-Propenoic acid, 2-methyl-, ethyl ester, polymer with 2-hydroxyethyl 2-methyl-2-propenoate; Hydroxyethylmethacrylate; 2-HYDROXYETHYL METHACRYLATE; hidroksietilmetakrilat; (Hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester; Methacrylic acid, 2-hydroxyethyl ester; β-Hydroxyethyl methacrylate; Ethylene glycol methacrylate; Ethylene glycol monomethacrylate; Glycol methacrylate; Glycol monomethacrylate; Hydroxyethyl methacrylate; Monomer MG-1; 2-(Methacryloyloxy)ethanol; Mhoromer; 2-Methyl-2-propenoic acid, 2-hydroxyethyl ester; Bisomer HEMA; GMA; HEMA; 1,2-Ethanediol, mono(2-methyl)-2-propenyl; NSC 24180; 1,2-Ethanediol, mono(2-methyl)-2-propenoate; 868-77-9; Glycol methacrylate; glikol metakrilat; Hydroxyethyl methacrylate; hidroksimetil metakrilat; Glycol monomethacrylate; glikol monometakrilat; hikroksietil metakrilat; metakrilate; iki hidroksimetil metakrilat; hidroksi etil metakrilat; methakrilat; hidroksi metil metakrilat; Ethylene glycol methacrylate; HEMA; 2-(Methacryloyloxy)ethanol; etilen glikol metrakrilat; akrilat; akrilate; 2-Hydroxyethylmethacrylate; Mhoromer; Ethylene glycol monomethacrylate; Monomer MG-1; 2-hydroxyethyl 2-methylprop-2-enoate; Methacrylic acid, 2-hydroxyethyl ester; hidroksietil ester; hidroksi etil ester; (hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester PHEMA, h e m a; beta-Hydroxyethyl methacrylate; beta hidroksi metakrilat; NSC 24180; 2-Hydroxyethyl 2-methylacrylate; UNII-6E1I4IV47V; PEG-5 methacrylate; CCRIS 6879; CHEBI:34288; Ethylene glycol, monomethacrylate; HSDB 5442; PEG-MA; POLYHYDROXYETHYL METHACRYLATE; EINECS 212-782-2; BRN 1071583; Monomethacrylic ether of ethylene glycol; metakrilik asit; 6E1I4IV47V; HYDROXYETHYL METACRYLATE; polyethylene glycol methacrylate; .beta.-Hydroxyethyl methacrylate; 1,2-Ethanediol mono(2-methyl)-2-propenoate; MFCD00002863; 12676-48-1; methacryloyloxyethyl alcohol; Poly-hema; poli hema; Bisomer HEMA; bizomer hema; 2-Hydroxyethyl methacrylate, 97%, stabilized; Hydroxymethacrylate gel; hidroksi metakrilat jel; Polyglycol methacrylate; Glycol methacrylate gel; Poly(hydroxyethyl methacrylate); PEG-8 methacrylate; hydroxyethylmethacrylate; hydroxyehtyl methacrylate; hydroxylethyl methacrylate; 2-hydroxyetyl methacrylate; DSSTox_CID_2128; HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) synonyms: 2-HYDROXYETHYL METHACRYLATE; (Hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester; Methacrylic acid, 2-hydroxyethyl ester; β-Hydroxyethyl methacrylate; Ethylene glycol methacrylate; Ethylene glycol monomethacrylate; Glycol methacrylate; Glycol monomethacrylate; Hydroxyethyl methacrylate; Monomer MG-1; 2-(Methacryloyloxy)ethanol; Mhoromer; 2-Methyl-2-propenoic acid, 2-hydroxyethyl ester; Bisomer HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); GMA; HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); 1,2-Ethanediol, mono(2-methyl)-2-propenyl; NSC 24180; 1,2-Ethanediol, mono(2-methyl)-2-propenoate; 868-77-9; Glycol methacrylate; glikol metakrilat; Hydroxyethyl methacrylate; hidroksimetil metakrilat; Glycol monomethacrylate; glikol monometakrilat; hikroksietil metakrilat; metakrilate; iki hidroksimetil metakrilat; hidroksi etil metakrilat; methakrilat; hidroksi metil metakrilat; Ethylene glycol methacrylate; HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); 2-(Methacryloyloxy)ethanol; etilen glikol metrakrilat; akrilat; akrilate; HYDROXYETHYL METACRYLATE; 2-Hydroxyethylmethacrylate; Mhoromer; Ethylene glycol monomethacrylate; Monomer MG-1; 2-hydroxyethyl 2-methylprop-2-enoate; Methacrylic acid, 2-hydroxyethyl ester; hidroksietil ester; hidroksi etil ester; (hydroxyethyl)methacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester; PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), h e m a; beta-Hydroxyethyl methacrylate; beta hidroksi metakrilat; NSC 24180; 2-Hydroxyethyl 2-methylacrylate; UNII-6E1I4IV47V; PEG-5 methacrylate; CCRIS 6879; CHEBI:34288; Ethylene glycol, monomethacrylate; HSDB 5442; PEG-MA; POLYHYDROXYETHYL METHACRYLATE; EINECS 212-782-2; BRN 1071583; Monomethacrylic ether of ethylene glycol; metakrilik asit; 6E1I4IV47V; polyethylene glycol methacrylate; .beta.-Hydroxyethyl methacrylate; 1,2-Ethanediol mono(2-methyl)-2-propenoate; MFCD00002863; 12676-48-1; methacryloyloxyethyl alcohol; Poly-HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); poli HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); Bisomer HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); bizomer HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate); 2-Hydroxyethyl methacrylate, 97%, stabilized; Hydroxymethacrylate gel; hidroksi metakrilat jel; Polyglycol methacrylate; Glycol methacrylate gel; Poly(hydroxyethyl methacrylate); PEG-8 methacrylate; hydroxyethylmethacrylate; hydroxyehtyl methacrylate; hydroxylethyl methacrylate; 2-hydroxyetyl methacrylate; DSSTox_CID_2128; Epitope ID:117123; UNII-9XEM35MI4M; EC 212-782-2; 2-hydroxylethyl methacrylate; 2-hydroxy ethyl methacrylate; 2-hydroxyethyl(methacrylate); 9XEM35MI4M; DSSTox_RID_76499; UNII-W321DU8DF9; DSSTox_GSID_22128; SCHEMBL14886; WLN: Q2OVY1&U1; 2-methacryloyloxyethyl alcohol; 25249-16-5; 4-02-00-01530 (Beilstein Handbook Reference); ethyleneglycol monomethacrylate; KSC176I7D; BIDD:ER0648; Methacrylic acid 2-hydroxyethyl; W321DU8DF9; CHEMBL1730239; DTXSID7022128; CHEBI:53709; CTK0H6471; poly(ethylene glycol methacrylate); poly(ethylene glycol) methacrylate; 2-Hydroxyethyl methacrylate, 98%; 2-Hydroxyethyl 2-methylacrylate; 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, homopolymer; KS-00000X9T; NSC24180; homopolimer; HYDROXYETHYL METACRYLATE; homo polimer; LS-89930; 2-Hydroxyethyl methacrylate,ophthalmic grade; 1,2-Ethanediol, mono(2-methyl)-2-propenyl; 2-Hydroxyethyl methacrylate, embedding medium (for microscopy); Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propen-1-yl)-omega-hydroxy-; Poly(oxy-1,2-ethanediyl), alpha-(2-methyl-1-oxo-2-propenyl)-omega-hydroxy-; 2-Hydroxyethyl methacrylate, >=99%, contains <=50 ppm monomethyl ether hydroquinone as inhibitor; 2-Hydroxyethyl methacrylate, contains <=250 ppm monomethyl ether hydroquinone as inhibitor, 97%

 

HEMA (HİDROKSİETİL METAKRİLAT, HYDROXYETHYL METACRYLATE)

 

Hidroksietilmetakrilat veya HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) olan organik bileşiğin , formül H ile 2 C = C (CH 3 ) C = 2 , CH 2 , CH 2 , OH. Kolayca polimerize olan renksiz viskoz bir sıvıdır. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), çeşitli polimerler yapmak için kullanılan bir monomerdir .
Profesyonel çalışanlar tarafından yaygın kullanım
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri ve kozmetik ve kişisel bakım ürünleri.
Bu madde aşağıdaki alanlarda kullanılır: inşaat ve inşaat işleri.
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: dış mekan kullanımı ve iç mekan kullanımı (örneğin, makinede yıkama sıvıları / deterjanlar, otomotiv bakım ürünleri, boyalar ve kaplama veya yapıştırıcılar, kokular ve oda spreyleri).
Formülasyon veya yeniden paketleme
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri ve kozmetik ve kişisel bakım ürünleri.
Bu maddenin çevreye salınımı endüstriyel kullanımdan kaynaklanabilir: karışımların formülasyonu ve malzemelerdeki formülasyon.
Sanayi sitelerinde kullanım
Bu madde şu ürünlerde kullanılmaktadır: kozmetik ve kişisel bakım ürünleri, yapıştırıcılar ve sızdırmazlık ürünleri ve metal olmayan yüzey işleme ürünleri. Bu madde şu alanlarda kullanılmaktadır: madencilik, sağlık hizmetleri, basım ve kayıtlı medya reprodüksiyonu, bina ve inşaat işleri ve belediye tedariki (örneğin elektrik, buhar, gaz, su) ve kanalizasyon arıtma.
Bu madde, elektrikli, elektronik ve optik ekipman, plastik ürünler, tekstil, deri veya kürk, ahşap ve ahşap ürünler, kağıt hamuru, kağıt ve kağıt ürünleri, mineral ürünler (örn. Sıvalar, çimento), metaller, fabrikasyon metal üretiminde kullanılır. ürünler, makineler ve araçlar ve mobilyalar.
Bu maddenin çevreye salınımı endüstriyel kullanımdan kaynaklanabilir: termoplastik imalat için, eşya üretiminde ve başka bir maddenin daha ileri imalatında bir ara adım olarak (ara ürünlerin kullanımı).
Üretim
Bu maddenin çevreye salınımı endüstriyel kullanımdan kaynaklanabilir: maddenin imalatında, sanayi tesislerinde yardımcı işlemlerde, eşyaların üretiminde, başka bir maddenin daha ileri imalatında bir ara adım olarak (ara ürünlerin kullanımı), işleme yardımcısı olarak , termoplastik üretim için, işleme yardımcısı olarak ve minimum salınımlı kapalı sistemlerdeki maddelerin.
Uygulamalar 
Polihidroksietilmetakrilat hidrofobiktir; bununla birlikte, polimer suya maruz kaldığında, molekülün hidrofilik asılı grubu nedeniyle şişecektir. Polimerin fiziksel ve kimyasal yapısına bağlı olarak, kuru ağırlığa göre % 10 ila% 600 su emebilir. Bu özelliğinden dolayı yumuşak kontakt lens üretiminde başarıyla kullanılan ilk malzemelerden biridir [3]
Poliizosiyanatlarla işlendiğinde poli (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), bazı boyalarda yararlı bir bileşen olan çapraz bağlı bir polimer, bir akrilik reçine yapar . [4]
3D baskıda kullanın 
HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), foto başlatıcıların varlığında UV ışığına maruz kaldığında oda sıcaklığında hızlı bir şekilde sertleştiği için 3D baskıdaki uygulamalara kendini iyi borç veriyor. 3D cam baskı için 40nm silika partiküllerinin süspanse edildiği bir monomerik matris olarak kullanılabilir. [5] BOC Anhidrit gibi uygun bir şişirme ajanı ile birleştirildiğinde, ısıtıldığında genleşen bir köpüren reçine oluşturur.
Uygulamalar
Polihidroksietilmetakrilat hidrofobiktir; bununla birlikte, polimer suya maruz kaldığında, molekülün hidrofilik asılı grubu nedeniyle şişecektir. Polimerin fiziksel ve kimyasal yapısına bağlı olarak, kuru ağırlığa göre% 10 ila% 600 su emebilir. Bu özelliğinden dolayı yumuşak kontakt lens üretiminde başarıyla kullanılan ilk malzemelerden biridir [3]
Poliizosiyanatlarla işlendiğinde poli (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), bazı boyalarda yararlı bir bileşen olan çapraz bağlı bir polimer, bir akrilik reçine yapar.
Rejeneratif Tıp Uygulamaları için Sentetik Biyomalzemeler
Satyavrata Samavedi, ... Aaron S. Goldstein, Organ Transplantasyonunda Rejeneratif Tıp Uygulamaları, 2014
7.5.2 Poli (2-hidroksietilmetakrilat)
7.5.2.1 Özellikler
Poli (2-hidroksietilmetakrilat) (pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), yüksek şeffaflığa sahip, inert, suya dayanıklı, bozunmayan bir hidrojeldir [180]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın fiziksel özellikleri (örneğin, şişme, sertlik, reoloji), farklı çapraz bağlanma yoğunluğu, kopolimerizasyon yoluyla farklı kimyasallar dahil etme ve mezoskopik gözenekler ekleyerek ayarlanabilir. Spesifik olarak, çapraz bağlanma yoğunluğundaki bir azalma, yumuşak doku rejenerasyonu için daha uygun olabilecek daha yumuşak, daha yumuşak bir hidrojel [157] ile sonuçlanır. Ayrıca, asetik asit, metilmetakrilat veya dekstran ile kopolimerizasyon, in vivo kalıcılığı, hidrofilikliği ve hücresel yapışmayı ayarlayabilir [158,181,182]. Son olarak, mezoskopik porojenlerin eklenmesi vasküler içe büyümeyi kolaylaştırabilir, hücresel bağlanmayı iyileştirebilir ve sınırlı geçirgenliğin üstesinden gelebilir [159,183]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın parçalanamaz olduğu düşünülse de (bu, onu in vivo olarak uzun vadeli uygulamalar için ideal olarak uygun kılar), bozunabilir pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kopolimerleri, enzimatik olarak duyarlı monomerlerin (örn. Dekstran) veya çapraz bağlama ajanlarının entegrasyonu ile üretilmiştir [158]. Bu bozunur malzemeler, farmasötiklerin ve proteinlerin kontrollü salımı için umut vaat etmektedir [158,160,184].
Tüketici Kullanımları
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri.
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: dış mekan kullanımı, iç mekan kullanımı (örneğin makinede yıkama sıvıları / deterjanlar, otomotiv bakım ürünleri, boyalar ve kaplamalar veya yapıştırıcılar, kokular ve oda spreyleri), uzun ömürlü malzemelerde dış mekan kullanımı düşük salınım oranıyla (örneğin metal, ahşap ve plastik yapı ve yapı malzemeleri) ve düşük salma oranına sahip uzun ömürlü malzemelerde (ör. döşeme, mobilya, oyuncaklar, inşaat malzemeleri, perdeler, ayakkabı, deri ürünler, kağıt ve karton ürünler, elektronik cihazlar).
Makale hizmet ömrü
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: düşük salınım oranına sahip uzun ömürlü malzemelerde dış mekan kullanımı (örn. Metal, ahşap ve plastik yapı ve yapı malzemeleri) ve düşük salınım oranına sahip uzun ömürlü malzemelerde iç mekan kullanımı ( örneğin döşeme, mobilya, oyuncaklar, inşaat malzemeleri, perdeler, ayakkabı, deri ürünler, kağıt ve karton ürünler, elektronik ekipman).
Bu madde karmaşık eşyalarda bulunabilir, serbest bırakılması amaçlanmamıştır: araçlar, makineler, mekanik cihazlar ve elektrikli / elektronik ürünler (örneğin bilgisayarlar, kameralar, lambalar, buzdolapları, çamaşır makineleri) ve elektrikli piller ve akümülatörler.
Bu madde, aşağıdakilere dayalı malzemeye sahip ürünlerde bulunabilir: kumaşlar, tekstil ürünleri ve giyim (örneğin giysi, şilte, perdeler veya halılar, tekstil oyuncakları), deri (örneğin eldivenler, ayakkabılar, cüzdanlar, mobilyalar), kağıt (örneğin mendiller, kadın hijyeni) ürünler, bebek bezleri, kitaplar, dergiler, duvar kağıtları), kauçuk (ör. lastikler, ayakkabılar, oyuncaklar), ahşap (ör. zeminler, mobilyalar, oyuncaklar) ve plastik (ör. gıda paketleme ve depolama, oyuncaklar, cep telefonları).
Optik Lensler
PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojellerinin ana uygulaması aşağıdakilerin hazırlanmasıdır:
katarakt ekstraksiyonundan sonra kullanılan kontakt ve göz içi lensler [275, 2761.
Işığı kapatan lensi hazırlamak için siyah pigmentli PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kullanıldı
oftalmik cerrahi sonrası [277]. Gentamisin ile ıslatılmış kontakt lensler
% 61,4 PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojelinin antibiyotiğin bakterisidal konsantrasyonlarını 3 güne kadar göz temasına kadar koruduğu bulunmuştur [278]. Difüzyon
hidrofilik kontakt lens yoluyla oksijen verilmesi korneadan kaçınmak için gereklidir
ödem. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) lenslerle bu, 33 um kalınlığında elde edilir
[279]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) temasında derin korneal stromal opasiteler görüldü
lensler ve kronik korneal anoksiyle ilişkiliydi [280]. Mevduatlar
bazen kontakt lenslerde de görülür. 12 ay sonra ortaya çıkarlar
Günlük lens kullanımının ve görme azalması ile ilişkili olabilir (2811.
Kontakt lenslerdeki protein birikintileri, kopolimere göre değişir:
HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)Imetakrilik asit kopolimerleri ile lensler büyük miktarları emer
lizozim ve HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)IMMA kopolimeri tercihen albümini adsorbe eder [282]. Metakrilik ile HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kopolimerlerinin kontakt lensleri
asit veya çeşitli silanların, silanlanmamış lenslere göre daha az lizozimi adsorbe ettiği bulunmuştur [283]. Kontakt lenslerde kalsiyum birikimi
PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) rapor edilmiştir [284].
Küçük miktarlar içeren PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojellerinin göz içi şeritleri
Metakrilik asidin (% 1.2-1.4), uygun şekilde tolere edildiği bulundu.
yüksek su ve karboksilik grup içeriği nedeniyle vivo (2851. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)
göz içi lensinin gelenekselden daha iyi tolere edildiği bulundu.
amino-poliamid bazlı implantlar, ancak kornea hücrelerinde mikrovillerin varlığı reçineden safsızlıkların salındığını düşündürür [286].
PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) bazlı göz içi lenslerin, daha sonra iyi korunmuş olduğu bulundu.
Nd: YAG lazer cerrahisi (2871.
Çeşitli ilaçlar (kloramfenikol, pilokarpin, deksametazon, ...)
Göz içi lenslerinde tutulduklarında insan lensine göre daha uzun bir arınma süresine sahip oldukları bulunmuştur [288]. Klinikobiyolojik sonuçlar
PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) göz içi lenslerinin en uygun olduğu bulundu,
İmplante edilen hastaların% 92'sinde görme keskinliği düzeliyor [289]. İçinde
çok merkezli ve uluslararası deneme, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) göz içi lensleri
klinik olarak en uygun olduğu bulunmuştur [290].

 

 

Profesyonel çalışanlar tarafından yaygın kullanım
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri ve kozmetik ve kişisel bakım ürünleri.
Bu madde aşağıdaki alanlarda kullanılır: inşaat ve inşaat işleri.
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: dış mekan kullanımı ve iç mekan kullanımı (örneğin, makinede yıkama sıvıları / deterjanlar, otomotiv bakım ürünleri, boyalar ve kaplama veya yapıştırıcılar, kokular ve oda spreyleri).
Formülasyon veya yeniden paketleme
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri ve kozmetikler ve kişisel bakım ürünleri.
Bu maddenin çevreye salınımı endüstriyel kullanımdan kaynaklanabilir: karışımların formülasyonu ve malzemelerdeki formülasyon.
Sanayi sitelerinde kullanım
Bu madde aşağıdaki ürünlerde kullanılmaktadır: kozmetik ve kişisel bakım ürünleri, yapıştırıcılar ve sızdırmazlık ürünleri ve metal olmayan yüzey işleme ürünleri.
Bu madde şu alanlarda kullanılmaktadır: madencilik, sağlık hizmetleri, basım ve kayıtlı medya reprodüksiyonu, inşaat ve inşaat işleri ve belediye tedariki (örneğin elektrik, buhar, gaz, su) ve kanalizasyon arıtma.
Bu madde, elektrikli, elektronik ve optik ekipman, plastik ürünler, tekstil, deri veya kürk, ahşap ve ahşap ürünler, kağıt hamuru, kağıt ve kağıt ürünleri, mineral ürünler (örn. Sıvalar, çimento), metaller, fabrikasyon metal üretiminde kullanılır. ürünler, makineler ve araçlar ve mobilyalar.
Bu maddenin çevreye salınımı endüstriyel kullanımdan kaynaklanabilir: termoplastik imalat için, eşya üretiminde ve başka bir maddenin daha ileri imalatında bir ara adım olarak (ara ürünlerin kullanımı).
Üretim
Bu maddenin çevreye salınımı, endüstriyel kullanımdan kaynaklanabilir: maddenin imalatında, sanayi tesislerinde yardımcı işlemlerde, eşyaların üretiminde, başka bir maddenin daha ileri imalatında bir ara adım olarak (ara ürünlerin kullanımı), işleme yardımcısı olarak , termoplastik üretim için, işleme yardımcısı olarak ve minimum salınımlı kapalı sistemlerdeki maddelerin.

 

 

2-Hidroksietil metakrilat (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), belki de en çok çalışılan ve kullanılan nötr hidrofilik monomerdir. Monomer çözünürdür, homopolimeri suda çözünmez ancak plastikleştirilir ve suda şişer. Bu monomer, yumuşak kontakt lensler gibi birçok hidrojel ürününün yanı sıra kontrollü ilaç salımı için polimer bağlayıcılar, vücut sıvıları için emiciler ve kaygan kaplamalar için temel oluşturur. Diğer ester monomerleriyle bir ko-monomer olarak HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), hidrofobikliği kontrol etmek veya reaktif bölgeleri sokmak için kullanılabilir.
7.5.2.2 Uygulamalar
Mükemmel optik özellikleri nedeniyle, pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) esas olarak oftalmik uygulamalarda [157] etafilcon A ve vifilcon A jenerik isimleri altında kullanılmıştır. Buna ek olarak, kontrollü protein ve ilaç salımı [158,161], kalp dokusu mühendisliği açısından incelenmiştir. [159], omurilik hasarında aksonal rejenerasyon [160] ve intervertebral disklerin değiştirilmesi [162]. Bununla birlikte, pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın iki sınırlaması kireçlenme eğilimi ve 2-hidroksietilmetakrilat monomerlerinin toksisitesidir. Kornea protezleri için pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın Faz I testi (keratoprotez), implantasyondan sonraki 2.5 yıl içinde kalsiyum tuzu birikimini ortaya çıkardı [180,181]. Aynı zamanda, artık HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) monomeri hidrojelin mekanik özelliklerini tehlikeye atabilir ve toksik etkilerle çevre dokuya sızabilir.
Çünkü 2-hidroksietil metakrilat, makromoleküler kimyada çok önemlidir. Bu makale, makalelerde veya hastalarda yayınlanan bilgileri özetleyerek ondan hazırlanan polimer veya kopolimerlerin temel özelliklerini gözden geçirmektedir. Aşağıdaki plan benimsenmiştir: 2-hidroksietil metakrilatın hazırlanması ve saflaştırılması 2-hidroksietil metakrilatın polimerizasyonu ve kopolimerizasyonu Monomerin kimyasal modifikasyonları Poli-2-hidroksietil metakrilat ve ilgili kopolimerlerin kimyasal modifikasyonları Polimer veya kopolimerin aşılama reaksiyonları Biyomedikalde uygulamalar alanlar Aşağıdaki kısaltmalar kullanılacaktır: 2-hidroksietil metakrilat için HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) (esas olarak tıp dergilerinde kullanılan GMA yerine) ve ilgili polimerler için PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate). EGDMA, monomerin hazırlanmasında sentezlenen bir safsızlık olan etilen glikol dimetakrilat için kullanılacaktır.
2-Hidroksietil metakrilat (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), belki de en çok çalışılan ve kullanılan nötr hidrofilik monomerdir. Monomer çözünürdür, homopolimeri suda çözünmez ancak plastikleştirilir ve suda şişer. Bu monomer, yumuşak kontakt lensler gibi birçok hidrojel ürününün yanı sıra kontrollü ilaç salımı için polimer bağlayıcılar, vücut sıvıları için emiciler ve kaygan kaplamalar için temel oluşturur. Diğer ester monomerleriyle bir ko-monomer olarak HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), hidrofobikliği kontrol etmek veya reaktif bölgeleri sokmak için kullanılabilir.

 

 

glikol metakrilat
Teknik sınıf: Saflık% = min. 97; Asit İçeriği% = maksimum 1.5;
EGDMA içeriği% = maksimum 0.2; Renk = 50
Bu madde hakkında
Yardımcı bilgi
Bu madde, Avrupa Ekonomik Alanı'nda yılda 10.000 - 100.000 ton arasında üretilmekte ve / veya ithal edilmektedir.
Bu madde tüketiciler tarafından, eşyalarda, profesyonel işçiler tarafından (yaygın kullanım), formülasyonda veya yeniden ambalajlamada, endüstriyel tesislerde ve imalatta kullanılmaktadır.
Tüketici Kullanımları
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri.
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: dış mekan kullanımı, iç mekan kullanımı (örneğin makinede yıkama sıvıları / deterjanlar, otomotiv bakım ürünleri, boyalar ve kaplamalar veya yapıştırıcılar, kokular ve oda spreyleri), uzun ömürlü malzemelerde dış mekan kullanımı düşük salınım oranıyla (örneğin metal, ahşap ve plastik yapı ve yapı malzemeleri) ve düşük salma oranına sahip uzun ömürlü malzemelerde (ör. döşeme, mobilya, oyuncaklar, inşaat malzemeleri, perdeler, ayakkabılar, deri ürünler, kağıt ve karton ürünler, elektronik cihazlar).
Makale hizmet ömrü
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: düşük salınım oranına sahip uzun ömürlü malzemelerde dış mekan kullanımı (örn. Metal, ahşap ve plastik yapı ve yapı malzemeleri) ve düşük salınım oranına sahip uzun ömürlü malzemelerde iç mekan kullanımı ( örneğin döşeme, mobilya, oyuncaklar, inşaat malzemeleri, perdeler, ayakkabı, deri ürünler, kağıt ve karton ürünler, elektronik ekipman).
Bu madde, serbest bırakılması amaçlanmayan karmaşık eşyalarda bulunabilir: araçlar, makineler, mekanik cihazlar ve elektrikli / elektronik ürünler (örneğin bilgisayarlar, kameralar, lambalar, buzdolapları, çamaşır makineleri) ve elektrikli piller ve akümülatörler.
Bu madde, aşağıdakilere dayalı malzemeye sahip ürünlerde bulunabilir: kumaşlar, tekstil ürünleri ve giyim (örneğin giysi, şilte, perdeler veya halılar, tekstil oyuncakları), deri (örneğin eldivenler, ayakkabılar, cüzdanlar, mobilyalar), kağıt (örneğin mendiller, kadın hijyeni) ürünler, bebek bezleri, kitaplar, dergiler, duvar kağıtları), kauçuk (ör. lastikler, ayakkabılar, oyuncaklar), ahşap (ör. zeminler, mobilyalar, oyuncaklar) ve plastik (ör. gıda paketleme ve saklama, oyuncaklar, cep telefonları).
7.5.2 Poli (2-hidroksietilmetakrilat)
7.5.2.1 Özellikler
Poli (2-hidroksietilmetakrilat) (pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), yüksek şeffaflığa sahip, inert, suya dayanıklı, bozunmayan bir hidrojeldir [180]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın fiziksel özellikleri (örneğin, şişme, sertlik, reoloji), farklı çapraz bağlanma yoğunluğu, kopolimerizasyon yoluyla farklı kimyasallar dahil etme ve mezoskopik gözenekler ekleyerek ayarlanabilir. Spesifik olarak, çapraz bağlanma yoğunluğundaki bir azalma, yumuşak doku rejenerasyonu için daha uygun olabilecek daha yumuşak, daha yumuşak bir hidrojel [157] ile sonuçlanır. Ayrıca, asetik asit, metilmetakrilat veya dekstran ile kopolimerizasyon, in vivo kalıcılığı, hidrofilikliği ve hücresel yapışmayı ayarlayabilir [158,181,182]. Son olarak, mezoskopik porojenlerin eklenmesi vasküler içe büyümeyi kolaylaştırabilir, hücresel bağlanmayı iyileştirebilir ve sınırlı geçirgenliğin üstesinden gelebilir [159,183]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın parçalanamaz olduğu düşünülse de (bu, onu in vivo uzun vadeli uygulamalar için ideal olarak uygun kılar), bozunabilir pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kopolimerleri enzimatik olarak duyarlı monomerlerin (örn. Dekstran) veya çapraz bağlama ajanlarının entegrasyonu ile üretilmiştir [158]. Bu bozunur malzemeler, farmasötiklerin ve proteinlerin kontrollü salımı için umut vaat etmektedir [158,160,184].

 

 

7.5.2.2 Uygulamalar
Mükemmel optik özellikleri nedeniyle, pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) esas olarak oftalmik uygulamalarda [157] etafilcon A ve vifilcon A jenerik isimleri altında kullanılmıştır. Buna ek olarak, kontrollü protein ve ilaç salımı [158,161], kalp dokusu mühendisliği açısından incelenmiştir. [159], omurilik hasarında aksonal rejenerasyon [160] ve intervertebral disklerin değiştirilmesi [162]. Bununla birlikte, pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın iki sınırlaması kireçlenme eğilimi ve 2-hidroksietilmetakrilat monomerlerinin toksisitesidir. Kornea protezleri için pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın Faz I testi (keratoprotez), implantasyondan sonraki 2.5 yıl içinde kalsiyum tuzu birikimini ortaya çıkardı [180,181]. Aynı zamanda, artık HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) monomeri hidrojelin mekanik özelliklerini tehlikeye atabilir ve toksik etkilerle çevre dokuya sızabilir.
Çünkü 2-hidroksietil metakrilat, makromoleküler kimyada çok önemlidir. Bu makale, makalelerde veya hastalarda yayınlanan bilgileri özetleyerek ondan hazırlanan polimer veya kopolimerlerin temel özelliklerini gözden geçirmektedir. Aşağıdaki plan benimsenmiştir: 2-hidroksietil metakrilatın hazırlanması ve saflaştırılması 2-hidroksietil metakrilatın polimerizasyonu ve kopolimerizasyonu Monomerin kimyasal modifikasyonları Poli-2-hidroksietil metakrilat ve ilgili kopolimerlerin kimyasal modifikasyonları Polimer veya kopolimerin aşılama reaksiyonları Biyomedikalde uygulamalar alanlar Aşağıdaki kısaltmalar kullanılacaktır: 2-hidroksietil metakrilat için HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) (esas olarak tıp dergilerinde kullanılan GMA yerine) ve ilgili polimerler için PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate). EGDMA, monomerin hazırlanmasında sentezlenen bir safsızlık olan etilen glikol dimetakrilat için kullanılacaktır.
2-Hidroksietil metakrilat (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)), belki de en çok çalışılan ve kullanılan nötr hidrofilik monomerdir. Monomer çözünürdür, homopolimeri suda çözünmez ancak plastikleştirilir ve suda şişer. Bu monomer, yumuşak kontakt lensler gibi birçok hidrojel ürününün yanı sıra kontrollü ilaç salımı için polimer bağlayıcılar, vücut sıvıları için emiciler ve kaygan kaplamalar için temel oluşturur. Diğer ester monomerleriyle bir ko-monomer olarak HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), hidrofobikliği kontrol etmek veya reaktif bölgeleri sokmak için kullanılabilir.
glikol metakrilat
Teknik sınıf: Saflık% = min. 97; Asit İçeriği% = maksimum 1.5;
EGDMA içeriği% = maksimum 0.2; Renk = 50
Bu madde hakkında
Yardımcı bilgi
Bu madde, Avrupa Ekonomik Alanı'nda yılda 10.000 - 100.000 ton arasında üretilmekte ve / veya ithal edilmektedir.
Bu madde tüketiciler tarafından, eşyalarda, profesyonel işçiler tarafından (yaygın kullanım), formülasyonda veya yeniden ambalajlamada, endüstriyel tesislerde ve imalatta kullanılmaktadır.
Tüketici Kullanımları
Bu madde aşağıdaki ürünlerde kullanılmaktadır: yapıştırıcılar ve sızdırmazlık malzemeleri.
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: dış mekan kullanımı, iç mekan kullanımı (örneğin makinede yıkama sıvıları / deterjanlar, otomotiv bakım ürünleri, boyalar ve kaplamalar veya yapıştırıcılar, kokular ve oda spreyleri), uzun ömürlü malzemelerde dış mekan kullanımı düşük salınım oranıyla (örneğin metal, ahşap ve plastik yapı ve yapı malzemeleri) ve düşük salma oranına sahip uzun ömürlü malzemelerde (ör. döşeme, mobilya, oyuncaklar, inşaat malzemeleri, perdeler, ayakkabılar, deri ürünler, kağıt ve karton ürünler, elektronik cihazlar).
Makale hizmet ömrü
Bu maddenin çevreye başka bir şekilde salınmasının nedeni şunlar olabilir: düşük salınım oranına sahip uzun ömürlü malzemelerde dış mekan kullanımı (örn. Metal, ahşap ve plastik yapı ve yapı malzemeleri) ve düşük salınım oranına sahip uzun ömürlü malzemelerde iç mekan kullanımı ( örneğin döşeme, mobilya, oyuncaklar, inşaat malzemeleri, perdeler, ayakkabı, deri ürünler, kağıt ve karton ürünler, elektronik.

 

 

Yakın zamanda, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gömülmesinin homojen olmayan bir mekanizma olduğunu ve yığın polimerize edilecek monomerin hacmine göre değiştiğini gösterdik [1811. 7.3. Diş Hekimliği Sentetik apatitli kalsiyum fosfat simanları, tetrakalsiyum fosfat ve dikalsiyum fosfat içeren bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojel ile hazırlanmıştır [182]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın süt dişleri endodontik dolgusu için oldukça biyouyumlu ve emilebilir bir malzeme olduğu bulunmuştur [1831. Bununla birlikte, hidrofilikliği nedeniyle PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), diş hekimliğinde dentin ve diğer tip restoratif reçineler arasında bir bağlanma reaktifi olarak daha yararlı görünmüştür; çeşitli HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve glutaraldehit karışımları araştırılmıştır [184, 1851. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kullanan diğer bağlanma kompleksleri mine ve dentin için rapor edilmiştir [186]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın dentin self-etching primerleri (asidik monomerler gibi) için uygun bir araç olduğu bulunmuştur [187]. Kontrollü salimli bir salım sistemi geliştirmek için bir HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) / MMA kopolimer membranında hapsedilmiş bir antiseptik (klorheksidin) ile başka klinik çalışmalar yapılmıştır [188]. Bununla birlikte, protez taşıyan alanlarda oral mukozayı örtmek için PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kalıcı bir yumuşak astar malzemesi olarak uygun bulunmadı [189]. 7.4. Moleküllerin ve Hücrelerin Hareketsizleştirilmesi Hareketsizleştirme, polimerik zincirlere basitçe hapsedilmiş veya aşılanmış olsun, belirli bir "yabancı" bileşiğin (yani bir enzim, bir ilaç, bir hücre ...) polimerik bir ağ içinde tutulmasını ifade eder. 7.5. Enzimlerin Hareketsizleştirilmesi Çeşitli enzimlerin katı destekler üzerinde hareketsizleştirilmesi biyoteknolojide bir dizi uygulama bulmuştur çünkü enzim molekülleri yeniden kullanılabilir hale gelir ve yan ürünler elde edilmez [190]. Enzim aktivitesini korumak için, radyasyona bağlı polimerizasyon sıklıkla bildirilmektedir: Selülazın tuzlamadan sonra düşük sıcaklıkta y-radyasyonu (5 x lo5 ila 5 x loh rad) ile polimerize edilmiş HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'da iyi korunduğu bulunmuştur [University of Illinois at Urbana-Champaign], 07:47 13 Mayıs 2013 2-HİDROKSİETİL METAKRİLAT 17 monomerden [191]. Tripsinin, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve glisidil metakrilat ile kopolimerize edilmiş bir aljinattan yapılmış kompozit bir materyal üzerinde kovalent olarak bağlandığı bulundu. Enzim aktivitesi kaybı, art arda beş kullanımdan sonra yalnızca% 7 idi [192]. Glikoz oksidaz, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranlarında kolaylıkla hareketsiz hale getirildi, ancak enzimin substratı (glukoz) için afinitesi önemli ölçüde azaldı [193]. Enzimin hidrofobik karakterine bağlı olarak PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'da immobilize edildiğinde lipaz aktivitesi azalmıştır [194]. Hidrojel içindeki enzimin yeri incelenmiştir. Floresein izotiyosiyanat etiketli glukoamilazın dağılımı floresan mikroskobu ile araştırıldı. Enzimin, polimer membran, gözenek yapıları arasındaki arayüzde ve kısmen polimerin kendisinde bulunduğu bulundu [1951. Çeşitli enzimlerin kovalent hareketsizleştirilmesini incelemek için bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve etilen dimetakrilat kopolimeri (Separon HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) kullanıldı. Eklenen tuzların türü ve konsantrasyonlarının verimi değiştirdiği bulunmuştur [1961. Glikoz oksidaz içeren PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) zarlarının glikoz solüsyonlarında şiştiği ve yapay pankreaslarda glikoz takibi için kullanılabilir [1971. 7.6. Hücrelerin Hareketsizleştirilmesi Biyoteknolojik açıdan ilginç enzimlere sahip olduğu bilinen çeşitli mikrobiyal hücre veya maya türleri, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojellerine (örneğin, glikoz izomeraz içeren Streptornyces phaechrornogenes [1981 ve bir galaktosidaz içeren Mortiella vinacea [1991)) hapsedilmiştir. Bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojelinin içine alınmış pankreas adacıklarının in vitro insülini sentezlediği ve saldığı bulunmuştur [200]. Bu tür pankreas adacıklarının biyouyumluluğunun hayvanlara implante edildiğinde mükemmel olduğu bulunmuştur [201]. Bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojelinden yapılan difüzyon odaları, tavşan embriyolarının immobilizasyonundan sonra in vivo başarıyla kullanıldı; oda, erkek farelerin periton boşluğuna implante edildi ve erken gelişim aşamaları takip edildi [202]. Saf PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın bir hidrojelinin spermatozoid hareketliliği üzerinde hiçbir etkisi yoktur, ancak HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-metakrilik asit kopolimeri, 30 dakika sonra spermatozoayı% 100 inhibe etti; ikincisi, vas deferens'e enjekte edildiğinde bir erkek kontraseptif tekniği olarak kullanılabilir [203]. Aljinat ve HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kompozitleri, hücrelerin mikrokapsüllenmesi için mikroküreler hazırlamak için kullanılmıştır [204]. Çin hamsteri yumurtalık fibroblast enkapsülasyonu için ayrıntılı bir yöntem bildirilmiştir [205]. [University of Illinois at Urbana-Champaign] tarafından 07:47 13 Mayıs 2013 tarihinde indirilmiştir. 18 AYLIK, CHATZOPOULOS VE BÖLÜM 7.7. İlaçların Hareketsizleştirilmesi Çok sayıda ilaç, örneğin ergotamin [14], salisilik asit [206, 2071, hormonlar [208], gibi ilaç verme cihazları üretmek için radyasyon polimerize HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'ya hapsedilmiştir (veya hareketsizleştirilmiştir). . . . Çeşitli ilaçların polimerlere yayılma yeteneği, membran ayırma ve ilaç verme cihazları gibi çeşitli biyoteknolojilerde kullanılabilir. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve diğer polimerlerdeki ilaç çözünürlüğünün tahmini çalışılmıştır [209].
BİYOMEDİKAL ALANLARDA UYGULAMALAR HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kolayca polimerize edilebildiği, hidrofilik bir askı grubuna sahip olduğu ve hidrojeller oluşturabildiği için, çeşitli biyomedikal alanlarda artan sayıda uygulama bulunmuştur. Daha önce belirtildiği gibi, literatür referanslarının tam bir listesi imkansız gibi görünse de, tek başına veya diğer kimyasal reaktiflerle kombinasyon halinde kullanıldığında HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) için ana ilgi alanlarını sunmaya çalıştık. 7.1. Tahriş Edici ve Toksik Etkiler Her şeyden önce, monomerin düşük toksisitesi yaygın olarak kabul edilmektedir, ancak HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın (güçlü) tahriş edici etkileri hakkında çok az rapor mevcuttur. Tuzlu su çözeltisinde (% -1) düşük konsantrasyonlarda ham HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) monomerinin intradermal enjeksiyonunun sıçanda çok hafif bir tahrişe neden olduğu görülürken, daha yüksek konsantrasyonların (% 20'ye kadar) belirgin bir reaksiyonla ilişkilendirildi. Kalıntıların tahriş edici rolünü vurgulayan sodyum benzoat (bir polimerizasyon başlatıcısı olarak kullanılan benzoil peroksit bozunmasının bir son ürünü) ile benzer bulgular gözlenmiştir [1591. Sıçanların kaslarına implante edilen PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) jellerinin, sürekli olarak ancak çok düşük bir oranda artık tahriş edici saldığı bulunmuştur. böylece hiçbir hücresel reaksiyon indüklemez [160]. % 0.01-1 konsantrasyonlarda kullanılan HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın, kantitatif video mikroskopi ile kültürlenmiş hücrelerin ince yapısını değiştirdiği bulunmuştur [161]. Öte yandan, aşağıda belirli bir organ tanımlamasında sıralanan çok sayıda klinik araştırma, minimum tahriş edici reaksiyonlar bulmuştur. 7.2. Histolojik Gömme HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın histolojik uygulamada kullanımı (yani, mikroskobik düzeyde canlı doku ve hücrelerin incelenmesi) Rosenberg [162] ve Wichterle (1631) tarafından önerilmiştir. Monomerin hidrofilik özellikleri, birleşik olarak kullanılmasına izin verir. Dokular için kurutucu madde ve elektron mikroskobu için bir gömme ortamı olarak. Bununla birlikte, bloklar [University of Illinois at Urbana-Champaign] tarafından 07:47 13 Mayıs 2013 tarihinde indirildi. 2-HYDROXYETHYL METHACRYLATE 15 saf PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın kesilmesi zor görünüyordu ve bunlar bir elektron ışını altında zayıf dirence sahipti Ticari olarak temin edilebilen HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kalitesinin 1965'e kadar önemli ölçüde değiştiği bildirildi [164]. n-butil metakrilat [165] veya stiren [166] ile kopolimerler de epoksi reçinelerden daha az tatmin edici bulundu. Son on yılda, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ışık mikroskobuna yeni bir ilgi bulmuştur [167,168]. Bennett ve arkadaşları tarafından kapsamlı bir inceleme yapılmıştır. "1. Kısaca, ışık mikroskobu için HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gömme tercih edilmektedir, çünkü: 1) Embe dding süresi klasik yöntemlere göre daha kısadır. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), büyük ve çok büyük numuneleri gömmek için kullanılmıştır [169]. 2) Doku ve hücresel yapıların korunması diğer klasik yöntemlerden çok daha üstündür [170]. Bunun nedeni doku kesitlerinin mikroskobik cam slaytlara yapışması ve reçinenin boyamadan önce çıkarılmamasıdır. (3) Bölümleme daha kolaydır ve yarı ince kesitler (yani, 2 ila 3 pm kalınlığında) çelik veya Ralph'ın cam bıçaklarıyla geleneksel mikrotomlarda elde edilebilir [171]. Ayrıca kesilen kısımlar suya yayılır ve küçülmez. (4) PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kesitlerinde çok sayıda boyama yöntemi uygulanabilir. Klasik lekelerin (kesiti şişiren bir hidro-alkolik araca sahip olanlar hariç) bazen küçük modifikasyonlardan sonra iyi çalıştığı bildirilmiştir [172]. Enzimolojik çalışmalar kolaylıkla yapılabilir ve büyük miktarlarda enzim korunur. Kalsifiye doku enzimleri, kalsifiye edilmemiş bölümlerde gösterilmiştir [1731. Şu anda, birkaç HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) tabanlı ticari kit mevcuttur (Historesin, JB4,.) Bununla birlikte, reçinenin yavaş hidrolizi düzenli sonuçların elde edilmesini zorlaştırmaktadır; rejenere metakrilik asit, bazik lekelerle birleşiyor gibi görünmektedir ve küçük miktarlar (% 1.5 veya daha az) arka planı güçlü bir şekilde kapatarak doğru boyamayı bozmaktadır [16, 181. Histoteknolojiye özel olarak ayrılmış çeşitli saflaştırma yöntemleri tasarlanmıştır [16-21]. Dimetilamino etil metakrilat ile kopolimerizasyon, metakrilik asidin karboksilik gruplarını kompleksleştirmek için önerildi [174]. Tek başına HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın kireçlenmiş dokular için zayıf bir ortam olduğu defalarca bulunmuştur çünkü molekülün boyutu bu tür dokulara sızmayı zorlaştırmaktadır. Metil metakrilat (MMA) [1751 veya çeşitli aikil metakrilatlar veya akrilatlar ile birleştirildiğinde, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın uygun gömme ortamı sağladığı gösterilmiştir [1761. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) genellikle bir redoks reaksiyonu (benzoil peroksit ve N, N'-dimetil anilin) ile polimerize edilir, ve yöntem soğuğa gömülmek için kullanılmıştır, böylece enzim aktiviteleri korunmuştur [169, 1731. Azobisisobütironitril de önerilmiştir [177]. Benzoil peroksit ve UV ışığının iyi çalıştığı bildirildi, ancak [Illinois Üniversitesi, Urbana-Champaign] tarafından 07:47 13 Mayıs 2013 16 AYLIK, CHATZOPOULOS VE CHAPPARD tarafından indirildi, bunlar boyama yapaylıklarını indükler [178]. Diğer başlatıcılar da önerilmiştir (barbitürat siklo bileşikleri, butazolidin [179]). PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın küçük miktarlarda c olduğunda daha iyi bölümler ürettiği gösterilmiştir.

 

 

rosslinker kullanılmaktadır [171, 1801. Yakın zamanda, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gömülmesinin homojen olmayan bir mekanizma olduğunu ve yığın polimerize edilecek monomerin hacmine göre değiştiğini gösterdik [1811. 7.3. Diş Hekimliği Sentetik apatit kalsiyum fosfat simanları, tetrakalsiyum fosfat ve dikalsiyum fosfat içeren bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojel ile hazırlanmıştır [182]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın süt dişleri endodontik dolgusu için oldukça biyouyumlu ve emilebilir bir malzeme olduğu bulunmuştur [1831. Bununla birlikte, hidrofilikliği nedeniyle PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), diş hekimliğinde dentin ve diğer tip restoratif reçineler arasında bir bağlanma reaktifi olarak daha yararlı görünmüştür; çeşitli HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve glutaraldehit karışımları araştırılmıştır [184, 1851. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kullanan diğer bağlanma kompleksleri mine ve dentin için rapor edilmiştir [186]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın dentin self-etching primerleri (asidik monomerler gibi) için uygun bir araç olduğu bulunmuştur [187]. Kontrollü salimli bir salım sistemi geliştirmek için bir HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) / MMA kopolimer membranında hapsedilmiş bir antiseptik (klorheksidin) ile başka klinik çalışmalar yapılmıştır [188]. Bununla birlikte, protez taşıyan alanlarda oral mukozayı örtmek için PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kalıcı bir yumuşak astar malzemesi olarak uygun bulunmadı [189]. 7.4. Moleküllerin ve Hücrelerin Hareketsizleştirilmesi Hareketsizleştirme, polimerik zincirlere basitçe hapsedilmiş veya aşılanmış olsa da, belirli bir "yabancı" bileşiğin (yani bir enzim, bir ilaç, bir hücre, ...) polimerik bir ağ içinde tutulması anlamına gelir. 7.5. Enzimlerin Hareketsizleştirilmesi Birkaç enzimin katı destekler üzerinde hareketsizleştirilmesi, biyoteknolojide bir dizi uygulama bulmuştur çünkü enzim molekülleri yeniden kullanılabilir hale gelir ve yan ürünler elde edilmez [190]. Enzim aktivitesini korumak için, radyasyona bağlı polimerizasyon sıklıkla bildirilmektedir: Selülazın tuzlamadan sonra düşük sıcaklıkta y-radyasyonu (5 x lo5 ila 5 x loh rad) ile polimerize edilmiş HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'da iyi korunduğu bulunmuştur [University of Illinois at Urbana-Champaign], 07:47 13 Mayıs 2013 2-HİDROKSİETİL METAKRİLAT 17 monomerden [191]. Tripsinin, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve glisidil metakrilat ile kopolimerize edilmiş bir aljinattan yapılmış kompozit bir materyal üzerinde kovalent olarak bağlandığı bulundu. Enzim aktivitesinin kaybı, art arda beş kullanımdan sonra yalnızca% 7 idi [192]. Glikoz oksidaz, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranlarında kolaylıkla hareketsiz hale getirildi, ancak enzimin substratı (glikoz) için afinitesi büyük ölçüde azaldı [193]. Enzimin hidrofobik karakterine bağlı olarak PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'da immobilize edildiğinde lipaz aktivitesi azalmıştır [194]. Hidrojel içindeki enzimin konumu incelenmiştir. Floresein izotiyosiyanat etiketli glukoamilaz dağılımı floresan mikroskobu ile incelenmiştir. Enzimin, polimer membran, gözenek yapıları ve kısmen polimerin arasındaki arayüzde yer aldığı bulundu [1951. Çeşitli enzimlerin kovalent olarak hareketsizleştirilmesini incelemek için bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve etilen dimetakrilat kopolimer (Separon HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) kullanıldı. Eklenen tuzların türü ve konsantrasyonlarının verimi değiştirdiği bulunmuştur [1961. Glikoz oksidaz içeren PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) zarlarının glikoz solüsyonlarında şiştiği ve yapay pankreaslarda glikoz takibi için kullanılabilir [1971. 7.6. Hücrelerin Hareketsizleştirilmesi Biyoteknolojik açıdan ilginç enzimlere sahip olduğu bilinen çeşitli mikrobiyal hücre veya maya türleri, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojellerine (örneğin, glikoz izomeraz içeren Streptornyces phaechrornogenes [1981 ve bir galaktosidaz içeren Mortiella vinacea [1991)) hapsedilmiştir. 
Bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojelinin içine alınmış pankreas adacıklarının in vitro insülini sentezlediği ve saldığı bulunmuştur [200]. Bu tür pankreas adacıklarının biyouyumluluğunun hayvanlara implante edildiğinde mükemmel olduğu bulunmuştur [201]. Bir PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hidrojelinden yapılan difüzyon odaları, tavşan embriyolarının immobilizasyonundan sonra in vivo başarıyla kullanıldı; oda, erkek farelerin periton boşluğuna implante edildi ve erken gelişim aşamaları takip edildi [202]. Saf PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'nın bir hidrojelinin spermatozoid hareketliliği üzerinde hiçbir etkisi yoktur, ancak HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-metakrilik asit kopolimeri 30 dakika sonra spermatozoayı% 100 inhibe etti; ikincisi, vas deferens'e enjekte edildiğinde bir erkek kontraseptif tekniği olarak kullanılabilir [203]. Aljinat ve HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) kompozitleri, hücrelerin mikrokapsüllenmesi için mikrokürelerin hazırlanmasında kullanılmıştır [204]. Çin hamsteri yumurtalık fibroblast enkapsülasyonu için ayrıntılı bir yöntem bildirilmiştir [205]. [University of Illinois at Urbana-Champaign] tarafından indirilmiştir: 07:47 13 Mayıs 2013 18 AYLIK, CHATZOPOULOS VE CHAPPARD 7.7. İlaçların Hareketsizleştirilmesi Çok sayıda ilaç, örneğin ergotamin [14], salisilik asit [206, 2071, hormonlar [208], gibi ilaç verme cihazları üretmek için radyasyon polimerize HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)'ya hapsedilmiştir (veya hareketsizleştirilmiştir). . . . Çeşitli ilaçların polimerlere yayılma yeteneği, membran ayırma ve ilaç verme cihazları gibi çeşitli biyoteknolojilerde kullanılabilir. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) ve diğer polimerlerdeki ilaç çözünürlüğünün tahmini çalışılmıştır [209].

 

 


HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)

 

 

Molar Mass of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate): 130.14 g/mol 
Hill Formula: C₆H₁₀O₃ 
Chemical Formula: CH₂=C(CH₃)COOCH₂CH₂OH 
CAS No: 868-77-9 
EC Number: 212-782-2
Hydroxyethylmethacrylate or HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is the organic compound with the formula H2C=C(CH3)CO2CH2CH2OH. It is a colorless viscous liquid that readily polymerizes. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is a monomer that is used to make various polymers.
Applications of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)
Polyhydroxyethylmethacrylate is hydrophobic; however, when the polymer is subjected to water it will swell due to the molecule's hydrophilic pendant group. Depending on the physical and chemical structure of the polymer, it is capable of absorbing from 10 to 600% water relative to the dry weight. Because of this property, it was one of the first materials to be successfully used in the manufacture of soft contact lenses[3]
When treated with polyisocyanates, poly(HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) makes a crosslinked polymer, an acrylic resin, that is a useful component in some paints.
Synthetic Biomaterials for Regenerative Medicine Applications
Satyavrata Samavedi, ... Aaron S. Goldstein, in Regenerative Medicine Applications in Organ Transplantation, 2014
7.5.2 Poly(2-hydroxyethylmethacrylate)
7.5.2.1 Properties of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)
Poly(2-hydroxyethylmethacrylate) (pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) is an inert, water-stable, nondegradable hydrogel [180] with high transparency. The physical properties of pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) (e.g., swelling, stiffness, rheology) can be tuned by varying cross-linking density, incorporating different chemistries through copolymerization, and introducing mesoscopic pores. Specifically, a reduction in cross-linking density results in a softer, more malleable hydrogel [157] that may be better suited for soft tissue regeneration. Moreover, copolymerization with acetic acid, methylmethacrylate, or dextran can adjust the permanence, hydrophilicity, and cellular adhesion in vivo[158,181,182]. Finally, the introduction of mesoscopic porogens can facilitate vascular ingrowth, improve cellular attachment, and overcome limited permeability [159,183]. Although pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is considered nondegradable (which makes it ideally suited for long-term applications in vivo), degradable pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) copolymers have been fabricated by the integration of enzymatically susceptible monomers (e.g., dextran) or cross-linking agents [158]. These degradable materials show promise for controlled release of pharmaceuticals and proteins [158,160,184].
7.5.2.2 Applications of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)
Due to its excellent optical properties, pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has primarily been used in ophthalmic applications [157] under the generic names etafilcon A and vifilcon A. In addition, it has been examined for controlled release of proteins and drugs [158,161], engineering of cardiac tissue [159], axonal regeneration in spinal cord injury [160], and replacement of intervertebral discs [162]. However, two limitations of pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) are its propensity for calcification and the toxicity of the 2-hydroxyethylmethacrylate monomers. Phase I testing of pHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) for corneal prostheses (keratoprosthesis) revealed calcium salt deposition within 2.5 years after implantation [180,181]. At the same time, residual HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) monomer can compromise the mechanical properties of the hydrogel, and leach into surrounding tissue with toxic effects
Because 2-hydroxyethyl methacrylate is very important in macromolecular chemistry. This paper reviews the main properties of the polymers or copolymers prepared from it by summarizing the information published in articles or patients. The following plan is adopted: Preparation and purification of 2-hydroxyethyl methacrylate Polymerization and copolymerization of 2-hydroxyethyl methacrylate and physical properties Chemical modifications of monomer Chemical modifications of poly-2-hydroxyethyl methacrylate and related copolymers Grafting reactions of polymer or copolymer Applications in biomedical fields The following abbreviations will be used: HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) for 2-hydroxyethyl methacrylate (rather than GMA, which is chiefly employed in medical journals) and PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) for the corresponding polymers. EGDMA will be used for ethylene glycol dimethacrylate, an impurity synthesized in the preparation of monomer.
2-Hydroxyethyl methacrylate (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) is perhaps the most widely studied and used neutral hydrophilic monomer. The monomer is soluble, its homopolymer is water-insoluble but plasticized and swollen in water. This monomer is the basis for many hydrogel products such as soft contact lenses, as well as polymer binders for controlled drug release, absorbents for body fluids and lubricious coatings. As a co-monomer with other ester monomers, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) can be used to control hydrophobicity or introduce reactive sites.
2-Hydroxyethyl methacrylate (HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) is perhaps the most widely studied and used neutral hydrophilic monomer. The monomer is soluble, its homopolymer is water-insoluble but plasticized and swollen in water. This monomer is the basis for many hydrogel products such as soft contact lenses, as well as polymer binders for controlled drug release, absorbents for body fluids and lubricious coatings. As a co-monomer with other ester monomers, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) can be used to control hydrophobicity or introduce reactive sites.
glycol methacrylate
Technical grade: Purity %=min. 97; Acid Content %=max 1.5;
EGDMA content %=max 0.2; Color=50
Because 2-hydroxyethyl methacrylate is very important in macromolecular chemistry. This paper reviews the main properties of the polymers or copolymers prepared from it by summarizing the information published in articles or patients. The following plan is adopted: Preparation and purification of 2-hydroxyethyl methacrylate Polymerization and copolymerization of 2-hydroxyethyl methacrylate and physical properties Chemical modifications of monomer Chemical modifications of poly-2-hydroxyethyl methacrylate and related copolymers Grafting reactions of polymer or copolymer Applications in biomedical fields The following abbreviations will be used: HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) for 2-hydroxyethyl methacrylate (rather than GMA, which is chiefly employed in medical journals) and PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) for the corresponding polymers. EGDMA will be used for ethylene glycol dimethacrylate, an impurity synthesized in the preparation of monomer.
method is the reaction of ethylene oxide and methacrylic acid (Scheme 2) [8-lo]. The HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) prepared by these two methods contains impurities in various percentages: e.g., methacrylic acid results from a hydrolysis reaction of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and EGDMA coming from esterification between methacrylic acid or HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and ethylene glycol. Since HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is a commercial product, it seems more useful to summarize the various purification procedures rather than the numerous works about industrial preparations because the commercial product contains EGDMA and methacrylic acid in monomer proportions. The main procedures use the solubility of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) in water or diethyl ether and its nonsolubility in hexane. EGDMA is soluble in hexane. Therefore, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is dissolved in four volumes of water and EGDMA is extracted with hexane. Then the aqueous solution of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is salted to complex methacrylic acid. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is extracted with diethyl ether, the solution is dried, and HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is distilled under vacuum (11-141. The elimination of methacrylic acid can also be carried out by soaking technical HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) with anhydrous sodium carbonate [15] and extracting EGDMA with hexane. Then HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is extracted with diethyl ether and distilled as previously described. The use of ion-exchange resins (Amberlyst A 21) is a simple method of elimination of methacrylic acid [ 16-18] but the yield is rather poor. N,N'-Dicyclohexylcarbodiimide has also been used for the elimination of methacrylic acid [19], but variations in the quality of the reagent often outweigh the value of the method. Lastly, extraction of EGDMA with hexane followed by the washing of a dilute solution of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) in water with sodium hydroxyde or sodium bicarbonate and the extraction of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) with chloroform gives, after drying and evaporation of chloroform, a product of high purity for the preparation of resins for optical microscopy [20, 211. The purity of the monomer can be checked by using vapor-phase chromatography [22,24], liquid chromatography [15], or thin layer chromatography [25]. Detailed distillation procedures to avoid polymerization of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have been described.

 

Polymerization As for the majority of methacrylic derivatives, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) can be polymerized by radical initiators or by various methods (y-rays, UV, and plasma). When the monomer is purified (without EGDMA, which is a crosslinking product), a soluble polymer can be synthesized, but when the monomer contains even a low percentage of EGDMA, the prepared copolymers produce swollen gels in water and in many other solvents A summary of the main procedures of polymerization is given in Table 1. Syndiotactic PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has been synthesized by UV catalysis at - 40"C, and isotactic PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has been prepared through hydrolysis of poly(benzoxyethy1 methacrylate) which had been synthesized from the corresponding polymers with dibutyl lithium cuprate as catalyst [52]. ~41. 3.1.2. Physical Properties of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) Because PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has numerous applications in biomedicine, its physical properties have been widely studied. 3.1.2.1. Studies of Diffusion. The permeability of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), used as a membrane for oxygen, has been compared to other macromolecules [53]. The diffusion of water through hydrogels of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), crosslinked with low percentages of EGDMA, has also been studied [54, 571. The influence of the degree of crosslinking [58, 601, the diffusion laws, the measurement of the equilibrium constant with water, and a structural study of swollen gels were recently published [61]. 3.1.2.2. Mechanical and Viscoelastic Properties. These properties were summarized in two previous reviews [62, 631. Composites with crosslinked PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have good elastic properties [64,65]. The influence of aqueous solutions of sodium chloride on the elasticity of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has also been studied in relation to its use for optical lenses [66]. Viscometry, Thermal, and Dielectric Properties, and NMR Characterizations. Because the Mark-Houwink parameters in many solvents are well known, the molecular weights of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) can be measured by viscosity.

Lastly, in order to use the PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) in the biomedical field, the purification of polymer gel has been described [80]. 3.1.3. Copolymerization Reactions of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) Copolymerization reactions of this monomer have been studied for its fundamental properties (determination of reactivity ratios, AlfreyPrice parameters) [81, 821 and its applications in various fields. The main results are given in Table 2. Some examples of block copolymerization with styrene [104, 1051, 2- phenyl-1,2,3-dioxaphospholane [ 1061, and with macromonomers [ 1071 of polyamine [lo81 or polyurethane [lo91 can be cited. Lastly, fundamental studies on the copolymerization of methyl methacrylate with HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) [110] and the determination of the composition of its copolymer have been made, and a model of the copolymerization of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and EDGMA was recently published [ 11 11. 4. CHEMICAL MODIFICATIONS OF MONOMER Because HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has a primary alcohol function a great number of nucleophilic reactions have been achieved and generally the modified monomer can be polymerized. A summary of the main chemical modifications is given in Table 3. 5. CHEMICAL MODIFICATIONS OF PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) AND RELATED COPOLYMERS A relatively low number of chemical modifications of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have been registered because chemical modifications of the corresponding monomer as well as its polymerization are easy to achieve. The listing of these reactions is given in Table 4. 6. GRAFTING REACTIONS OF POLYMER AND COPOLYMER By using various techniques, the grafting of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and copolymers prepared with HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) as a comonomer has been carried out with natural polymers such as cellulose [148], dextran [149], and starch.

 

APPLICATIONS IN BIOMEDICAL FIELDS Because HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) can be easily polymerized, possesses a hydrophilic pendant group, and can form hydrogels, an increasing number of applications have been found in various biomedical fields. Although, as previously mentioned, a complete listing of the literature references appears impossible, we have tried to present the main areas of interest for HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), either when used alone or in combination with other chemical reagents. 7.1. Irritant and Toxic Effects First of all, the low toxicity of the monomer is widely accepted but few reports are available on the (potent) irritant effects of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate). Intradermal injection of crude HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) monomer at low concentrations in saline solution (-1%) was found to induce a very mild irritation in the rat, while higher concentrations (up to 20%) were associated with a pronounced reaction. Similar findings were observed with sodium benzoate (an end product of benzoyl peroxide degradation used as a polymerization initiator) emphasizing the irritant role of residues [ 1591. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gels implanted into muscles of rats were found to release residual irritant continuously but at a very low rate, thus inducing no cellular reaction [160]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) used at 0.01-1% concentrations was found to alter the fine structure of cultured cells with quantitative video microscopy [161]. On the other hand, numerous clinical trials, listed hereafter within a specific organ description, have found minimal irritant reactions. 7.2. Histological Embedding 
The use of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) in histological practice (i.e., the study of living tissues and cells at the microscopic level) was proposed by Rosenberg [162] and Wichterle (1631. The hydrophilic properties of the monomer permit it to be used as a combined dehydrating agent for the tissues and as an embedding medium for electron microscopy. However, blocks Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 2-HYDROXYETHYL METHACRYLATE 15 of pure PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) appeared difficult to section, and they had poor resistance under an electron beam. The quality of commercially available HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was reported to vary considerably up to 1965 [164]. Copolymers with n-butyl methacrylate [165] or styrene [166] were also found less satisfactory than the epoxy resins. During the last decade, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has found a new interest in light microscopy [167,168]. An extensive review was made by Bennett et al. "1. Briefly, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) embedding is favored for light microscopy because: 1) The embedding duration is shorter than for classical methods. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was used to embed large and very large specimen [169]. 2) Preservation of tissular and cellular structures is far superior to other classical methods [170]. This is due to the adherence of tissue sections onto the microscopic glass slides and because the resin is not removed prior to staining. (3) Sectioning is easier and semithin sections (i.e., 2 to 3 pm in thickness) can be obtained on conventional microtomes with steel or Ralph's glass knives [171]. Furthermore, once cut, the sections spread on water and do not shrink. (4) Numerous staining methods can be performed on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) sections. Classical stains (excepted those having a hydro-alcoholic vehicle which makes the section swell) have been reported to work well, sometimes after minor modifications [172]. Enzymological studies can readily be done, and large amounts of enzymes are preserved. Calcified tissue enzymes have been demonstrated on undecalcified sections [ 1731. At the present time, several HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-based commercial kits are available (Historesin, JB4, . . .) However, the slow hydrolysis of the resin makes it difficult to obtain regular results; the regenerated methacrylic acid appears to combine with basic stains, and small amounts (1.5% or less) impair correct staining by strongly obscuring the background [ 16, 181. Several purification methods specially devoted to histotechnology have been designed [ 16-21]. Copolymerization with dimethylamino ethyl methacrylate was proposed to complex the carboxylic groups of methacrylic acid [174]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) alone was repeatedly found to be a poor medium for calcified tissues because the size of the molecule makes it difficult to infiltrate such tissues. Combined with methyl methacrylate (MMA) [ 1751 or various types of aikyl methacrylates or acrylates, HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was shown to provide suitable embedding media [ 1761. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is usually polymerized by a redox reaction (benzoyl peroxide and N,N‘-dimethyl aniline), and the method has been used to embed in the cold, thus preserving enzyme activities [ 169, 1731. Azobisisobutyronitrile has also been proposed [177]. Benzoyl peroxide and UV light were reported to work well, but Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 16 MONTHEARD, CHATZOPOULOS, AND CHAPPARD they induce staining artifacts [178]. Other initiators have also been proposed (barbiturate cyclo compounds, butazolidine [179]). PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has been shown to produce better sections when small amounts of crosslinkers are used [171, 1801. We recently showed that HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) embedding is an inhomogeneous mechanism and that it varies according to the volume of monomer to be bulk polymerized [ 1811. 7.3. Dentistry Synthetic apatitic calcium phosphate cements were prepared with a PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogel containing tetracalcium phosphate and dicalcium phosphate [182].

 

 

PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was found to be a highly biocompatible and resorbable material for primary teeth endodontic filling [ 1831. However, due to its hydrophilicity, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) appeared more useful in dentistry as a bonding reagent between dentine and other types of restorative resins; varying mixtures of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and glutaraldehyde were investigated [ 184, 1851. Other bonding complexes using PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have been reported for enamel and dentine [186]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was found to be a suitable vehicle for dentin self-etching primers (such as acidic monomers) [187]. Other clinical trials have been done with an antiseptic (chlorhexidine) entrapped in a HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/MMA copolymer membrane to develop a controlled release delivery system [188]. However, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was found unsuitable as a permanent soft lining material for covering the oral mucosa in denture-bearing areas [189]. 7.4. Immobilization of Molecules and Cells Immobilization implies the entrapment within a polymeric network of a definite "foreign" compound (i.e., an enzyme, a drug, a cell, . . .), whether it is simply confined or grafted onto the polymeric chains. 7.5. Immobilization of Enzymes Immobilization of several enzymes on solid supports has found a number of applications in biotechnology because enzyme molecules become reusable and side products are not obtained [190]. In order to preserve enzyme activity, radiation-induced polymerization is often reported: Cellulase was found to be well preserved in HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) polymerized by y-radiation (5 x lo5 to 5 x loh rad) at low temperature after salting Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 2-HYDROXYETHYL METHACRYLATE 17 out the monomer [191]. Trypsin was found to bind covalently on a composite material made of an alginate copolymerized with HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and glycidyl methacrylate. The loss of enzyme activity was only 7% after five successive uses [192]. Glucose oxidase was readily immobilized in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranes, but the affinity of the enzyme for its substrate (glucose) was substantially decreased [193]. The activity of lipase was decreased when immobilized in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) due to the hydrophobic character of the enzyme itself [194]. The location of the enzyme within the hydrogel has been studied. The distribution of fluorescein isothiocyanate-labeled glucoamylase was investigated with fluorescence microscopy. The enzyme was found to be located on the interface between the polymer membrane, the pore structures, and partly in the polymer itself [ 1951. A PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and ethylene dimethacrylate copolymer (Separon HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)) was used to study the covalent immobilization of various enzymes. The type and concentrations of added salts were found to modify yields [ 1961. Membranes of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) containing glucose oxidase were found to swell in glucose solutions and may be used for glucose monitoring in artificial pancreases [ 1971. 7.6. Immobilization of Cells Several types of microbial cells or yeasts known to have biotechnologically interesting enzymes have been entrapped into PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels (e.g., Streptornyces phaechrornogenes containing glucose isomerase [ 1981 and Mortiella vinacea containing a galactosidase [ 1991). Pancreatic islets enclosed in a PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogel were found to synthesize and release insuline in vitro [200]. The biocompatibility of such pancreatic islets was found to be excellent when implanted into animals [201]. Diffusion chambers made of a PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogel were successfully used in vivo after immobilization of rabbit embryos; the chamber was implanted in the peritoneal cavity of male mice and early developmental stages were followed [202]. A hydrogel of pure PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has no effect on spermatozoid motility, but the copolymer of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-methacrylic acid inhibited 100% of spermatozoa after 30 min; the latter might be used as a male contraceptive technique when injected into the vas deferens [203]. Composites of alginate and HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have been used to prepare microspheres for the microencapsulation of cells [204]. A detailed method for Chinese hamster ovary fibroblast encapsulation was reported [205]. Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 18 MONTHEARD, CHATZOPOULOS, AND CHAPPARD 7.7. Immobilization of Drugs Numerous drugs have been entrapped (or immobilized) in radiationpolymerized HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) in order to produce drug delivery devices, e.g., ergotamine [14], salicylic acid.
The ability of various drugs to diffuse into polymers may be used in various types of biotechnologies such as membrane separation and drug delivery devices. The prediction of drug solubilities in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and other polymers has been studied [209]. Immobilization of chloramphenicol in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels crosslinked with EGDMA was found to be released upon swelling of the gel in water; the diffusion obeyed Fick's second law [210]. The kinetics of thiamine (vitamin B1) diffusion from previously loaded PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) beads was studied at 37.5"C in water [211]. Theophyllin release from an amphiphilic composite made of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and polyisobutylene was studied from a kinetic point of view [212]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranes are favored as transdermal delivery systems for long-term constant drug delivery [213]. Vidarabine (an antiviral agent) was entrapped to PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranes and used for transdermal patches: the blood-drug concentrations could be predicted and the permeability coefficient of the membranes could be adjusted by controlling hydration [214, 2151. Similar observations were obtained with progesterone [216]. Nitroglycerin was also entrapped in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranes to provide a transdermal delivery system [217]. Synthetic organ substitutes having the capacity to slowly release hormones have been designed: diffusivity of insulin through PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) membranes was studied [218]. Because PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels are hardly degraded in vivo, it was found that entrapment of drugs (testosterone) in a blend of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/albumin resulted in a slowly degraded matrix with continuous release of the drug. Testicular prosthesis releasing testosterone have been done [219, 2201. Anticancer drugs have been extensively entrapped in matrices of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), thus providing a hard material which can be implanted into the tumor where it delivers higher amounts of drug in situ [221]. 5- Fluorouracil was embedded in HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/bisglycol acrylate copolymer in 3 mm diameter beads which could be implanted subcutaneously [222]. Methotrexate and 3'3'-dibromoaminopterin were absorbed on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and used as local intratumoral implants in Gardner's lymphosarcoma of the C3H mouse [223]. The effect of crosslinking on the swelling of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gels (and the drug diffusion coefficient through these gels) has been explored [224]. Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 PHYDROXYETHYL METHACRYLATE 19 Finally, various substances have been immobilized in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) in order to prepare diagnostic tools. An antiserum-raised methotrexate was entrapped in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) during polymerization. The lyophilized powder was used for radioimmunoassay of this anticancer drug [225]. The entrapment of immunoglobulins has been used for immunochemical studies [226]. The Fc fragment of immunoglobulins has been grafted onto Separon HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) resins after periodate oxidation, thus providing immuno-affinity sorbents for the isolation of proteins [227]. A dye, Cibracron Blue F3GA, was entrapped within the pores of a nylon/ PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gel used for protein purification [228]. 7.8. Biocompatibility of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) Biocompatibility of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has been studied at the cell and tissue levels. Cell cultures on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-coated slides or on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels are used to investigate the intimate mechanisms of cellular compatibility. Implanting pieces of gel in an animal by a surgical procedure allows the study of the adverse reactions of the whole organisms against the resin. Because implantations in the eye or in direct contact with blood induces specific problems, these two aspects of the biocompatibility will be treated separately below. 7.9. Cell Culture The hydrophilicity of the resin was primarily thought to be favorable for cell culture. Cellular adherence to PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has been recognized since 1975 when myoblasts from chicken embryos were cultured on polysiloxane grafted with PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) [229]. Spreading of cells of hamster kidney was found higher on modified PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) than on polystyrene due to the hydrophilic properties of the resin [230]. Similar experiments done with endothelial cells of newborn cords have shown that cells first adhere to the hydrophilic substrate, then spread and proliferate [231]. However, pure and unmodified PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) appears unable to support attachment and growth of mammalian cells [232].

 

 

PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) films of increasing thickness decrease cell adhesiveness on culture flasks and alter cell shape [233]. Leukocyte locomotion is suppressed on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-coated glass plates [234]. When malignant melanoma cells are grown on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-coated culture dishes, they form aggregates of round cells and generate polykaryons [235]. Adrenal tumor cells grown on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) show decreased steroidogenesis secondary to altered cell shape Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 20 MONTHEARD, CHATZOPOULOS, AND CHAPPARD caused by the hydrophilicity of the polymer [236]. The time required for rat peritoneal macrophages to adhere to HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/ethyl methacrylate copolymers was found to be higher than to hydroxystyrene/styrene copolymers due to the high hydrophilicity of the former [237]. Decreasing rates of adhesion of staphylococci on MMAIHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) copolymers parallel the increasing HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) content (i.e., the hydrophilicity) [238]. Simple gels of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) do not permit cell spreading. When ionizable groups are entrapped, cell spreading is no longer inhibited; when collagen is added, cell proliferation occurs [239]. Peritoneal macrophage adherence decreases as a function of increased hydrophilicity of the polymer, and cellular adherence on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is favored by absorption of proteins of the extracellular milieu: albumin, fibronectine, and immunoglobulines G favor cellular adherence. On the other hand, fibrinogene, elastine, and plasma copolymerized with PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hamper this phenomenon [240]. Alternative modifications of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) allowing cell proliferation have been to incorporate methacrylic acid, diethylaminoethyl methacrylate, or by treating the polymer with concentrated sulfuric acid (creating surface carboxylic groups) [241]. 7.10. Implants PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is a suitable biomaterial for implantation because of its lack of toxicity and high resistance to degradation [242]. Numerous composite biomaterials based on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and collagen blends have been used [243]. By using various additives, the mechanical properties of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels can be adjusted to various biomedical applications [244]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/methacrylic acid copolymers were found more biocompatible than PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) alone which induces a giant cell inflammatory reaction when implanted [245]. When collagen was entrapped in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) gels, their composites were found highly biocompatible when implanted subcutaneously in rats [246]. Composites with a low collagen content were found to be better preserved in long-term implantation studies whereas those containing higher amounts of collagen exhibited calcification in the early stages, followed by full biodegradation [247]. Calcification of a synthetic biomaterial implies poor biocompatibility. Although the chemical composition appears important, the macroscopic structure and surface characters of a PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) implant have been shown to play a key role [248). Extensive calcium accumulation in the mitochondria of cells in close contact with the gels was proposed as the primary mechanism Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 2-HYDROXYETHYL METHACRYLATE 21 of calcification [249]; in addition, hydrogels of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and methacrylic acid copolymers were found to pick up large amounts of Ca2+ when exposed to aqueous solutions of calcium [250]. This effect was taken into account when porous sponges of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) were compared to demineralized bone for inducing ectopic bone formation [251]. Hydrogels of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have an excellent biocompatibility but present poor mechanical properties. The mechanical and hydration properties of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and other polyhydroxyalkyl methacrylate membranes have been studied [252]. Composites of silicone rubber and fine particles of hydrated PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) were found to combine both advantages [253]. Radiation grafting of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was done on polyurethane films (with good mechanical properties) and found to increase hydrophilicity and tolerance [254]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was grafted on polyether urethane area membranes used for hemodialysis; permeability and blood tolerance were improved but tensile strength was reduced [255]. Hemodialysis membranes of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) crosslinked with ethylene dimethacrylate have been prepared [256]. The interaction of urea (the end product of protein catabolism) with PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels revealed that small amounts of methacrylic acid may dramatically increase the swelling properties of the gel [15, 2571. 7.1 1. Prosthetic Vascular Implants and Blood Compatibility A very interesting property of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-based hydrogels is their high hemocompatibility. In the presence of blood, thrombus formation is delayed. Because blood is a complex milieu, in this paragraph we consider all the relationships of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) with blood cells, endothelial cells (i.e., the inner cells of the blood vessels), orland blood components. Due to the hydrophilicity of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), films of styrene-butadiene-styrene had a better blood compatibility when grafted with PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) [258]. Copolymers of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/styrene or HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/dimethyl siloxane suppress platelet adhesion and aggregation (and thus reduce thrombus formation) by the creation of hydrophilic/hydrophobic microdomains [259]. Similar findings were obtained with HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/polyethylene oxide and HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/ polypropylene oxide copolymers [260]. A HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-polyamine copolymer was found to induce no blood platelet adherence or activation. Also, this copolymer was used to separate T from B lymphocytes subpopulations via its hydrophilic-hydrophobic microdomain composition [261]. Vascular tubes of polyethylene blended with 14% PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have a very low thrombogeneity due to hydrophilization of the plastic [262]. 
Radiation grafting of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) and N-vinyl pyrrolidone on silicone rubber was used to improve the hydrophilicity of artery-to-vein shunts and thus to reduce thrombus formation [263]. A highly antithrombogenic polymer was prepared by immobilizing the fibrinolytic enzyme urokinase in a PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogel [ 2641. Another important aspect of blood compatibility is the power of a biomaterial to activate the complement system. It is a complex system of plasma proteins activated in cascade and involved in the inflammation process. Intraocular lenses made of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) were found ineffective in vifro to activate the serum complement system (C3a, C4a, C5a) [265]. HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-grafted polyethylene tubes were not found to inactivate the complement [266]. On the other hand, copolymers of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)/ethyl methacrylate were reported to activate the complement when the polymer contained 60% or more HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) [267). Low density lipoprotein adsorption on PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was found to be low due to the hydrophilicity of the resin [268]. Particles of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) were used to study the phagocytic processes of macrophages and neutrophils [ 269, 2701. The hemocompatibility of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) has led to the development of a medical method used to remove endo or exo toxins from blood. Hemoperfusion takes advantage of activated charcoal to bind such toxics (barbiturates, tricyclic antidepressants, . . .) [243]. Activated carbon particles have been encapsulated with PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) for the construction of hemoperfusion columns; heparinized blood is purified by adsorption of irrelevant toxic molecules onto the entrapped charcoal particles and the cleaned blood is then perfused to the patient [271]. Composites of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate), PEG, and activated carbon were found useful for other blood perfusion applications [272]. Another important application of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) is the occlusion of blood vessels in various organs and principally in tumors (which are always hypervascularized). Spherical particles of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) of regular shape were produced by suspension polymerization. When injected in a vessel close to the tumor, the small beads act as emboli and obliterate the smaller vessels. Thus tumor vascularization is stopped and endovascular embolization is followed by tumoral cell necrosis and size reduction of the tumor. The swelling in water of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) beads makes them suitable to close obliteration of vessels [273]. Detailed procedures have been published for preparing such porous PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) beads of regular size suitable as artificial thrombi [274]. Beads can be loaded or coupled with Downloaded by [University of Illinois at Urbana-Champaign] at 07:47 13 May 2013 2-HYDROXYETHYL METHACRYLATE 23 an x-ray contrasting agent (iodine) which helps radiographic tracing [ 2431.

 

Optical Lenses The main application of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels is the preparation of contact and intraocular lenses used after cataract extraction [275, 2761. Black pigmented PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) was used to prepare light-occluding lens after opthalmic surgery [277]. Gentamicin-soaked contact lenses made of a 61.4% PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogel were found to retain bactericidal concentrations of the antibiotic up to 3 days of eye contact [278]. Diffusion of oxygen through hydrophilic contact lens is necessary to avoid corneal oedema. With PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) lenses, this is obtained with a 33-pm thickness [279]. Deep corneal stromal opacities were seen in PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) contact lenses and were related to chronic corneal anoxia [280]. Deposits are sometimes observed within contact lenses. They occur after 12 months of daily lens wear and may be associated with vision decrement (2811. The protein deposits on contact lenses vary according to the copolymer: With HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)Imethacrylic acid copolymers, lenses absorb large amounts of lysosyme, and HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)IMMA copolymer preferentially adsorbs albumin [282]. Contact lenses of copolymers of HEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) with methacrylic acid or various silanes were found to adsorb less lysosyme than unsilanized lenses [283]. Deposits of calcium in contact lens made of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) have been reported [284]. Intraocular strips of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) hydrogels containing small amounts (1.2-1.4%) of methacrylic acid were found to be favorably tolerated in vivo due to the high water and carboxylic group content (2851. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) intraocular lens were found to be better tolerated than conventional amino-polyamide-base implants, but the presence of microvilli on corneal cells suggests the release of impurities from the resin [286]. PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate)-based intraocular lenses were found to be well preserved after Nd:YAG laser surgery (2871. Various drugs (chloramphenicol, pilocarpine, dexamethasone, . . .) were found to have a longer washout period when entrapped in intraocular lenses than in the human lens [288]. The clinicobiological results of PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) intraocular lenses were found to be the most favorable, with 92% of implanted patients recovering visual acuity [289]. In a multicenter and international trial, PHEMA (Hidroksietil Metakrilat, Hydroxyethyl Metacrylate) intraocular lenses were found to be the most favorable clinically [290].

Ataman Kimya A.Ş. © 2015 Tüm Hakları Saklıdır.